{- This file contains: - Definition of set truncations -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.SetTruncation.Base where open import Cubical.Core.Primitives -- set truncation as a higher inductive type: data ∥_∥₀ {ℓ} (A : Set ℓ) : Set ℓ where ∣_∣₀ : A → ∥ A ∥₀ squash₀ : ∀ (x y : ∥ A ∥₀) (p q : x ≡ y) → p ≡ q