{- This file document and export the main primitives of Cubical Agda. It also defines some basic derived operations (composition and filling). -} {-# OPTIONS --cubical --safe #-} module Cubical.Core.Primitives where open import Agda.Builtin.Cubical.Path public open import Agda.Builtin.Cubical.Sub public renaming ( inc to inS ; primSubOut to outS ) open import Agda.Primitive.Cubical public renaming ( primIMin to _∧_ -- I → I → I ; primIMax to _∨_ -- I → I → I ; primINeg to ~_ -- I → I ; isOneEmpty to empty ; primComp to compCCHM -- This should not be used ; primHComp to hcomp ; primTransp to transp ; itIsOne to 1=1 ) open import Agda.Primitive public using ( Level ) renaming ( lzero to ℓ-zero ; lsuc to ℓ-suc ; _⊔_ to ℓ-max ) open import Agda.Builtin.Sigma public -- This file document the Cubical Agda primitives. The primitives -- themselves are bound by the Agda files imported above. -- * The Interval -- I : Setω -- Endpoints, Connections, Reversal -- i0 i1 : I -- _∧_ _∨_ : I → I → I -- ~_ : I → I -- * Dependent path type. (Path over Path) -- Introduced with lambda abstraction and eliminated with application, -- just like function types. -- PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ infix 4 _[_≡_] _[_≡_] : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ _[_≡_] = PathP -- Non dependent path types Path : ∀ {ℓ} (A : Set ℓ) → A → A → Set ℓ Path A a b = PathP (λ _ → A) a b -- PathP (λ i → A) x y gets printed as x ≡ y when A does not mention i. -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ _ → A) -- * @IsOne r@ represents the constraint "r = i1". -- Often we will use "φ" for elements of I, when we intend to use them -- with IsOne (or Partial[P]). -- IsOne : I → Setω -- i1 is indeed equal to i1. -- 1=1 : IsOne i1 -- * Types of partial elements, and their dependent version. -- "Partial φ A" is a special version of "IsOne φ → A" with a more -- extensional judgmental equality. -- "PartialP φ A" allows "A" to be defined only on "φ". -- Partial : ∀ {ℓ} → I → Set ℓ → Setω -- PartialP : ∀ {ℓ} → (φ : I) → Partial φ (Set ℓ) → Setω -- Partial elements are introduced by pattern matching with (r = i0) -- or (r = i1) constraints, like so: private sys : ∀ i → Partial (i ∨ ~ i) Set₁ sys i (i = i0) = Set sys i (i = i1) = Set → Set -- It also works with pattern matching lambdas: -- http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.PatternMatchingLambdas sys' : ∀ i → Partial (i ∨ ~ i) Set₁ sys' i = λ { (i = i0) → Set ; (i = i1) → Set → Set } -- When the cases overlap they must agree. sys2 : ∀ i j → Partial (i ∨ (i ∧ j)) Set₁ sys2 i j = λ { (i = i1) → Set ; (i = i1) (j = i1) → Set } -- (i0 = i1) is actually absurd. sys3 : Partial i0 Set₁ sys3 = λ { () } -- * There are cubical subtypes as in CCHM. Note that these are not -- fibrant (hence in Setω): _[_↦_] : ∀ {ℓ} (A : Set ℓ) (φ : I) (u : Partial φ A) → Agda.Primitive.Setω A [ φ ↦ u ] = Sub A φ u infix 4 _[_↦_] -- Any element u : A can be seen as an element of A [ φ ↦ u ] which -- agrees with u on φ: -- inS : ∀ {ℓ} {A : Set ℓ} {φ} (u : A) → A [ φ ↦ (λ _ → u) ] -- One can also forget that an element agrees with u on φ: -- outS : ∀ {ℓ} {A : Set ℓ} {φ : I} {u : Partial φ A} → A [ φ ↦ u ] → A -- * Composition operation according to [CCHM 18]. -- When calling "comp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- compCCHM : ∀ {ℓ} (A : (i : I) → Set ℓ) (φ : I) (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1 -- Note: this is not recommended to use, instead use the CHM -- primitives! The reason is that these work with HITs and produce -- fewer empty systems. -- * Generalized transport and homogeneous composition [CHM 18]. -- When calling "transp A φ a" Agda makes sure that "A" is constant on "φ". -- transp : ∀ {ℓ} (A : I → Set ℓ) (φ : I) (a : A i0) → A i1 -- When calling "hcomp A φ u a" Agda makes sure that "a" agrees with "u i0" on "φ". -- hcomp : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : I → Partial φ A) (a : A) → A private variable ℓ : Level ℓ′ : I → Level -- Homogeneous filling hfill : {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) ----------------------- (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Heterogeneous composition defined as in CHM comp : (A : ∀ i → Set (ℓ′ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) → --------------------------- A i1 comp A {φ = φ} u u0 = hcomp (λ i → λ { (φ = i1) → transp (λ j → A (i ∨ j)) i (u _ 1=1) }) (transp A i0 (outS u0)) -- Heterogeneous filling defined using comp fill : (A : ∀ i → Set (ℓ′ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) --------------------------- (i : I) → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) (λ j → λ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (inS {φ = φ ∨ (~ i)} (outS {φ = φ} u0)) -- Direct definition of transport filler, note that we have to -- explicitly tell Agda that the type is constant (like in CHM) transpFill : {A : Set ℓ} (φ : I) (A : (i : I) → Set ℓ [ φ ↦ (λ _ → A) ]) (u0 : outS (A i0)) → -------------------------------------- PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0) transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0 -- Σ-types infix 2 Σ-syntax Σ-syntax : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ-max ℓ ℓ') Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B