{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.HAEquiv where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Nat
record isHAEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ-max ℓ ℓ') where
field
g : B → A
sec : ∀ a → g (f a) ≡ a
ret : ∀ b → f (g b) ≡ b
com : ∀ a → cong f (sec a) ≡ ret (f a)
HAEquiv : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ-max ℓ ℓ')
HAEquiv A B = Σ (A → B) λ f → isHAEquiv f
private
variable
ℓ ℓ' : Level
A : Set ℓ
B : Set ℓ'
iso→HAEquiv : Iso A B → HAEquiv A B
iso→HAEquiv {A = A} {B = B} (iso f g ε η) = f , (record { g = g ; sec = η ; ret = ret ; com = com })
where
sides : ∀ b i j → Partial (~ i ∨ i) B
sides b i j = λ { (i = i0) → ε (f (g b)) j
; (i = i1) → ε b j }
bot : ∀ b i → B
bot b i = cong f (η (g b)) i
ret : (b : B) → f (g b) ≡ b
ret b i = hcomp (sides b i) (bot b i)
com : (a : A) → cong f (η a) ≡ ret (f a)
com a i j = hcomp (λ k → λ { (i = i0) → ε (f (η a j)) k
; (i = i1) → hfill (sides (f a) j) (inS (bot (f a) j)) k
; (j = i0) → ε (f (g (f a))) k
; (j = i1) → ε (f a) k})
(cong (cong f) (sym (Hfa≡fHa (λ x → g (f x)) η a)) i j)
equiv→HAEquiv : A ≃ B → HAEquiv A B
equiv→HAEquiv e = iso→HAEquiv (equivToIso e)
congEquiv : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (e .fst x ≡ e .fst y)
congEquiv {A = A} {B} {x} {y} e = isoToEquiv (iso intro elim intro-elim elim-intro)
where
e' : HAEquiv A B
e' = equiv→HAEquiv e
f : A → B
f = e' .fst
g : B → A
g = isHAEquiv.g (e' .snd)
sec : ∀ a → g (f a) ≡ a
sec = isHAEquiv.sec (e' .snd)
ret : ∀ b → f (g b) ≡ b
ret = isHAEquiv.ret (e' .snd)
com : ∀ a → cong f (sec a) ≡ ret (f a)
com = isHAEquiv.com (e' .snd)
intro : x ≡ y → f x ≡ f y
intro = cong f
elim-sides : ∀ p i j → Partial (~ i ∨ i) A
elim-sides p i j = λ { (i = i0) → sec x j
; (i = i1) → sec y j }
elim-bot : ∀ p i → A
elim-bot p i = cong g p i
elim : f x ≡ f y → x ≡ y
elim p i = hcomp (elim-sides p i) (elim-bot p i)
intro-elim : ∀ p → intro (elim p) ≡ p
intro-elim p i j =
hcomp (λ k → λ { (i = i0) → f (hfill (elim-sides p j)
(inS (elim-bot p j)) k)
; (i = i1) → ret (p j) k
; (j = i0) → com x i k
; (j = i1) → com y i k })
(f (g (p j)))
elim-intro : ∀ p → elim (intro p) ≡ p
elim-intro p i j =
hcomp (λ k → λ { (i = i0) → hfill (λ l → λ { (j = i0) → secEq e x l
; (j = i1) → secEq e y l })
(inS (cong (λ z → g (f z)) p j)) k
; (i = i1) → p j
; (j = i0) → secEq e x (i ∨ k)
; (j = i1) → secEq e y (i ∨ k) })
(secEq e (p j) i)