{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --cubical --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) → Set (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Set ℓ) (A : Set ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} (T : Partial φ (Set ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} {T : Partial φ (Set ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} {T : Partial φ (Set ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) → P i0 ≃ P i1 ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Set ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Set ℓ' ] T ≃ A)) → Set ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Set ℓ} (φ : I) {T : Partial φ (Set ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ}