{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.HLevels where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.FunExtEquiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HAEquiv using (congEquiv)
open import Cubical.Foundations.Equiv using (isoToEquiv; isPropIsEquiv; retEq; invEquiv)
open import Cubical.Foundations.Univalence using (ua; univalence)
open import Cubical.Data.Sigma using (ΣPathP; sigmaPath→pathSigma; pathSigma≡sigmaPath; _Σ≡T_)
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-comm)
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : A → Type ℓ
x y : A
n : ℕ
hProp : Type (ℓ-suc ℓ)
hProp {ℓ} = Σ (Type ℓ) isProp
isOfHLevel : ℕ → Type ℓ → Type ℓ
isOfHLevel 0 A = isContr A
isOfHLevel 1 A = isProp A
isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y)
isOfHLevelDep : ℕ → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isOfHLevelDep 0 {A = A} B = {a : A} → B a
isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1
isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1)
isOfHLevel→isOfHLevelDep : {n : ℕ} → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B
isOfHLevel→isOfHLevelDep {n = 0} {A = A} {B} h {a} = h a .fst
isOfHLevel→isOfHLevelDep {n = 1} {A = A} {B} h = λ b0 b1 p → isProp→PathP h p b0 b1
isOfHLevel→isOfHLevelDep {n = suc (suc n)} {A = A} {B} h {a0} {a1} b0 b1 =
isOfHLevel→isOfHLevelDep {n = suc n}
{B = λ p → PathP (λ i → B (p i)) b0 b1} λ p → helper a1 p b1
where
helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) →
isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)
helper a1 p b1 = J
(λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1))
(λ _ → h _ _ _) p b1
HLevel : ℕ → Type (ℓ-suc ℓ)
HLevel {ℓ} n = Σ[ A ∈ Type ℓ ] (isOfHLevel n A)
inhProp→isContr : A → isProp A → isContr A
inhProp→isContr x h = x , h x
isPropIsProp : isProp (isProp A)
isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i
retractIsContr
: ∀ {B : Type ℓ}
→ (f : A → B) (g : B → A)
→ (h : (x : A) → g (f x) ≡ x)
→ (v : isContr B) → isContr A
retractIsContr f g h (b , p) = (g b , λ x → (cong g (p (f x))) ∙ (h x))
retractIsProp
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isProp B → isProp A
retractIsProp f g h p x y i =
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (p (f x) (f y) i))
retractIsOfHLevel
: (n : ℕ) {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isOfHLevel n B → isOfHLevel n A
retractIsOfHLevel 0 = retractIsContr
retractIsOfHLevel 1 = retractIsProp
retractIsOfHLevel (suc (suc n)) f g h ofLevel x y =
retractIsOfHLevel (suc n)
(cong f)
(λ q i →
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (q i)))
(λ p k i →
hcomp
(λ j → λ
{ (i = i0) → h x (j ∨ k)
; (i = i1) → h y (j ∨ k)
; (k = i1) → p i})
(h (p i) k))
(ofLevel (f x) (f y))
isContrSigma
: isContr A
→ ((x : A) → isContr (B x))
→ isContr (Σ[ x ∈ A ] B x)
isContrSigma {A = A} {B = B} (a , p) q =
let h : (x : A) (y : B x) → (q x) .fst ≡ y
h x y = (q x) .snd y
in (( a , q a .fst)
, ( λ x i → p (x .fst) i
, h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i))
isProp→isPropPathP : (∀ a → isProp (B a))
→ (m : x ≡ y) (g : B x) (h : B y)
→ isProp (PathP (λ i → B (m i)) g h)
isProp→isPropPathP {B = B} {x = x} isPropB m = J P d m where
P : ∀ σc → x ≡ σc → _
P _ m = ∀ g h → isProp (PathP (λ i → B (m i)) g h)
d : P x refl
d = isProp→isSet (isPropB x)
isProp→isContrPathP : (∀ a → isProp (B a))
→ (m : x ≡ y) (g : B x) (h : B y)
→ isContr (PathP (λ i → B (m i)) g h)
isProp→isContrPathP isPropB m g h =
inhProp→isContr (isProp→PathP isPropB m g h) (isProp→isPropPathP isPropB m g h)
isProp→isContr≡ : isProp A → (x y : A) → isContr (x ≡ y)
isProp→isContr≡ isPropA x y = inhProp→isContr (isPropA x y) (isProp→isSet isPropA x y)
isContrPath : isContr A → (x y : A) → isContr (x ≡ y)
isContrPath cA = isProp→isContr≡ (isContr→isProp cA)
propPi : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x)
propPi h f0 f1 i x = h x (f0 x) (f1 x) i
ΣProp≡
: ((x : A) → isProp (B x)) → {u v : Σ[ a ∈ A ] B a}
→ (p : u .fst ≡ v .fst) → u ≡ v
ΣProp≡ pB {u} {v} p i = (p i) , isProp→PathP pB p (u .snd) (v .snd) i
isPropSigma : isProp A → ((x : A) → isProp (B x)) → isProp (Σ[ x ∈ A ] B x)
isPropSigma pA pB t u = ΣProp≡ pB (pA (t .fst) (u .fst))
hLevelPi
: ∀ n
→ ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n ((x : A) → B x)
hLevelPi 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i
hLevelPi {B = B} 1 h f g i x = (h x) (f x) (g x) i
hLevelPi (suc (suc n)) h f g =
subst (isOfHLevel (suc n)) funExtPath (hLevelPi (suc n) λ x → h x (f x) (g x))
isSetPi : ((x : A) → isSet (B x)) → isSet ((x : A) → B x)
isSetPi Bset = hLevelPi 2 (λ a → Bset a)
isSet→isSet' : isSet A → isSet' A
isSet→isSet' {A = A} Aset {x} {y} {z} {w} p q r s
= transport (squeezeSq≡ r p q s) (Aset _ _ p (r ∙∙ q ∙∙ sym s))
isSet'→isSet : isSet' A → isSet A
isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl
squeezeCu≡
: ∀{w x y z w' x' y' z' : A}
→ {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z}
→ {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'}
→ {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'}
→ (ps : Square a p p' c) (qs : Square a q q' b)
→ (rs : Square c r r' d) (ss : Square b s s' d)
→ (f0 : Square p q r s) (f1 : Square p' q' r' s')
→ (f0 ≡ transport⁻ (λ k → Square (ps k) (qs k) (rs k) (ss k)) f1)
≡ Cube ps qs rs ss f0 f1
squeezeCu≡ ps qs rs ss f0 f1 τ
= Cube
(λ j → ps (j ∧ τ))
(λ j → qs (j ∧ τ))
(λ j → rs (j ∧ τ))
(λ j → ss (j ∧ τ))
f0
(toPathP {A = λ k → Square (ps k) (qs k) (rs k) (ss k)}
(transportTransport⁻ (λ k → Square (ps k) (qs k) (rs k) (ss k)) f1) τ)
isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A
isGroupoid→isGroupoid' Agpd ps qs rs ss f0 f1
= transport
( squeezeCu≡ (λ _ → refl) f0 f1' (λ _ → refl) (λ _ → f0 i0) (λ _ → f1' i1)
∙ transpose≡
∙ squeezeCu≡ ps qs rs ss f0 f1
) (Agpd (ps i0 i0) (ss i0 i0) (f0 i0) (f1' i0) refl rs')
where
Sq = λ k → Square (ps k) (qs k) (rs k) (ss k)
f1' = transport⁻ Sq f1
rs' = transport⁻ (λ k → Square refl (f0 k) (f1' k) refl) (λ _ → f1' i1)
transpose≡
: Cube (λ i _ → ps i0 i) f0 f1' (λ i _ → ss i0 i) refl refl
≡ Cube refl refl refl refl f0 f1'
transpose≡
= ua ((λ cu i j → cu j i)
, λ where
.equiv-proof cu
→ ((λ i j → cu j i) , refl)
, (λ{ (cu' , p) → λ k → (λ j i → p (~ k) i j) , λ τ → p (~ k ∨ τ) }))
isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A
isGroupoid'→isGroupoid Agpd' w x p q r s
= Agpd' {q = p} {r = q} {q' = p} {r' = q} refl refl refl refl r s
hLevelSuc : (n : ℕ) (A : Type ℓ) → isOfHLevel n A → isOfHLevel (suc n) A
hLevelSuc 0 A = isContr→isProp
hLevelSuc 1 A = isProp→isSet
hLevelSuc (suc (suc n)) A h a b = hLevelSuc (suc n) (a ≡ b) (h a b)
hLevelLift : (m : ℕ) (hA : isOfHLevel n A) → isOfHLevel (m + n) A
hLevelLift zero hA = hA
hLevelLift {A = A} (suc m) hA = hLevelSuc _ A (hLevelLift m hA)
isPropIsOfHLevel : (n : ℕ) (A : Type ℓ) → isProp (isOfHLevel n A)
isPropIsOfHLevel 0 A = isPropIsContr
isPropIsOfHLevel 1 A = isPropIsProp
isPropIsOfHLevel (suc (suc n)) A f g i a b =
isPropIsOfHLevel (suc n) (a ≡ b) (f a b) (g a b) i
isPropIsSet : isProp (isSet A)
isPropIsSet {A = A} = isPropIsOfHLevel 2 A
HLevel≡ : ∀ {A B : Type ℓ} {hA : isOfHLevel n A} {hB : isOfHLevel n B} →
(A ≡ B) ≡ ((A , hA) ≡ (B , hB))
HLevel≡ {n = n} {A = A} {B = B} {hA} {hB} =
isoToPath (iso intro elim intro-elim elim-intro)
where
intro : A ≡ B → (A , hA) ≡ (B , hB)
intro eq = ΣProp≡ (λ A → isPropIsOfHLevel n _) eq
elim : (A , hA) ≡ (B , hB) → A ≡ B
elim = cong fst
intro-elim : ∀ x → intro (elim x) ≡ x
intro-elim eq = cong ΣPathP (ΣProp≡ (λ e →
J (λ B e →
∀ k → (x y : PathP (λ i → isOfHLevel n (e i)) hA k) → x ≡ y)
(λ k → isProp→isSet (isPropIsOfHLevel n _) _ _) e hB) refl)
elim-intro : ∀ x → elim (intro x) ≡ x
elim-intro eq = refl
isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n (Σ A B)
isOfHLevelΣ zero h1 h2 =
let center = (fst h1 , fst (h2 (fst h1))) in
let p : ∀ x → center ≡ x
p = λ x → sym (sigmaPath→pathSigma _ _ (sym (snd h1 (fst x)) , sym (snd (h2 (fst h1)) _)))
in (center , p)
isOfHLevelΣ 1 h1 h2 x y = sigmaPath→pathSigma x y ((h1 _ _) , (h2 _ _ _))
isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y =
let h3 : isOfHLevel (suc n) (x Σ≡T y)
h3 = isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ p → h2 (p i1)
(subst B p (snd x)) (snd y)
in transport (λ i → isOfHLevel (suc n) (pathSigma≡sigmaPath x y (~ i))) h3
hLevel≃ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B)
hLevel≃ zero {A = A} {B = B} hA hB = A≃B , contr
where
A≃B : A ≃ B
A≃B = isoToEquiv (iso (λ _ → fst hB) (λ _ → fst hA) (snd hB ) (snd hA))
contr : (y : A ≃ B) → A≃B ≡ y
contr y = ΣProp≡ isPropIsEquiv (funExt (λ a → snd hB (fst y a)))
hLevel≃ (suc n) hA hB =
isOfHLevelΣ (suc n) (hLevelPi (suc n) (λ _ → hB))
(λ a → subst (λ n → isOfHLevel n (isEquiv a)) (+-comm n 1) (hLevelLift n (isPropIsEquiv a)))
hLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : ℕ) → A ≃ B → isOfHLevel n A → isOfHLevel n B
hLevelRespectEquiv 0 eq hA =
( fst eq (fst hA)
, λ b → cong (fst eq) (snd hA (eq .snd .equiv-proof b .fst .fst)) ∙ eq .snd .equiv-proof b .fst .snd)
hLevelRespectEquiv 1 eq hA x y i =
hcomp (λ j → λ { (i = i0) → retEq eq x j ; (i = i1) → retEq eq y j })
(cong (eq .fst) (hA (invEquiv eq .fst x) (invEquiv eq .fst y)) i)
hLevelRespectEquiv {A = A} {B = B} (suc (suc n)) eq hA x y =
hLevelRespectEquiv (suc n) (invEquiv (congEquiv (invEquiv eq))) (hA _ _)
hLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) →
isOfHLevel n (A ≡ B)
hLevel≡ n hA hB = hLevelRespectEquiv n (invEquiv univalence) (hLevel≃ n hA hB)
hLevelHLevel1 : isProp (HLevel {ℓ = ℓ} 0)
hLevelHLevel1 x y = ΣProp≡ (λ _ → isPropIsContr) ((hLevel≡ 0 (x .snd) (y .snd) .fst))
hLevelHLevelSuc : ∀ n → isOfHLevel (suc (suc n)) (HLevel {ℓ = ℓ} (suc n))
hLevelHLevelSuc n x y = subst (λ e → isOfHLevel (suc n) e) HLevel≡ (hLevel≡ (suc n) (snd x) (snd y))
hProp≡HLevel1 : hProp {ℓ} ≡ HLevel {ℓ} 1
hProp≡HLevel1 {ℓ} = isoToPath (iso intro elim intro-elim elim-intro)
where
intro : hProp {ℓ} → HLevel {ℓ} 1
intro h = fst h , snd h
elim : HLevel 1 → hProp
elim h = (fst h) , (snd h)
intro-elim : ∀ h → intro (elim h) ≡ h
intro-elim h = ΣProp≡ (λ _ → isPropIsOfHLevel 1 _) refl
elim-intro : ∀ h → elim (intro h) ≡ h
elim-intro h = ΣProp≡ (λ _ → isPropIsProp) refl
isSetHProp : isSet (hProp {ℓ = ℓ})
isSetHProp = subst (λ X → isOfHLevel 2 X) (sym hProp≡HLevel1) (hLevelHLevelSuc 0)
isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ}
→ (extend : ∀ φ → Partial φ A → A)
→ (∀ u → u ≡ (extend i1 λ { _ → u}))
→ isContr A
isContrPartial→isContr {A = A} extend law
= ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y)
where ex = extend i0 empty
module Aux (y : A) (i : I) where
φ = ~ i ∨ i
u : Partial φ A
u = λ { (i = i0) → ex ; (i = i1) → y }
v = extend φ u
isOfHLevelLift : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A)
isOfHLevelLift n = retractIsOfHLevel n lower lift λ _ → refl