{-

Theory about equivalences (definitions are in Core/Glue.agda)

- isEquiv is a proposition ([isPropIsEquiv])
- Any isomorphism is an equivalence ([isoToEquiv])

There are more statements about equivalences in Equiv/Properties.agda:

- if f is an equivalence then (cong f) is an equivalence
- if f is an equivalence then precomposition with f is an equivalence
- if f is an equivalence then postcomposition with f is an equivalence

-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Equiv where

open import Cubical.Core.Glue

open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws

open import Cubical.Data.Nat

private
  variable
     ℓ'  : Level
    A B C : Type 

fiber :  {A : Type } {B : Type ℓ'} (f : A  B) (y : B)  Type (ℓ-max  ℓ')
fiber {A = A} f y = Σ[ x  A ] f x  y

equivIsEquiv :  {A : Type } {B : Type ℓ'} (e : A  B)  isEquiv (equivFun e)
equivIsEquiv e = snd e

equivCtr :  {A : Type } {B : Type ℓ'} (e : A  B) (y : B)  fiber (equivFun e) y
equivCtr e y = e .snd .equiv-proof y .fst

equivCtrPath :  {A : Type } {B : Type ℓ'} (e : A  B) (y : B) 
  (v : fiber (equivFun e) y)  Path _ (equivCtr e y) v
equivCtrPath e y = e .snd .equiv-proof y .snd

-- The identity equivalence
idIsEquiv :  (A : Type )  isEquiv (idfun A)
equiv-proof (idIsEquiv A) y =
  ((y , refl) , λ z i  z .snd (~ i) , λ j  z .snd (~ i  j))

idEquiv :  (A : Type )  A  A
idEquiv A = (idfun A , idIsEquiv A)

-- Proof using isPropIsContr. This is slow and the direct proof below is better

isPropIsEquiv' : (f : A  B)  isProp (isEquiv f)
equiv-proof (isPropIsEquiv' f u0 u1 i) y =
  isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i

-- Direct proof that computes quite ok (can be optimized further if
-- necessary, see:
-- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562

isPropIsEquiv : (f : A  B)  isProp (isEquiv f)
equiv-proof (isPropIsEquiv f p q i) y =
  let p2 = p .equiv-proof y .snd
      q2 = q .equiv-proof y .snd
  in p2 (q .equiv-proof y .fst) i
   , λ w j  hcomp  k  λ { (i = i0)  p2 w j
                            ; (i = i1)  q2 w (j  ~ k)
                            ; (j = i0)  p2 (q2 w (~ k)) i
                            ; (j = i1)  w })
                   (p2 w (i  j))

equivEq : (e f : A  B)  (h : e .fst  f .fst)  e  f
equivEq e f h = λ i  (h i) , isProp→PathP isPropIsEquiv h (e .snd) (f .snd) i

isoToEquiv : Iso A B   A  B
isoToEquiv i = _ , isoToIsEquiv i

module _ (w : A  B) where
  invEq : B  A
  invEq y = fst (fst (snd w .equiv-proof y))

  secEq : section invEq (w .fst)
  secEq x = λ i  fst (snd (snd w .equiv-proof (fst w x)) (x ,  j  fst w x)) i)

  retEq : retract invEq (w .fst)
  retEq y = λ i  snd (fst (snd w .equiv-proof y)) i

equivToIso :  { ℓ'} {A : Type } {B : Type ℓ'}  A  B  Iso A B
equivToIso {A = A} {B = B} e = iso (e .fst) (invEq e ) (retEq e) (secEq e)

invEquiv : A  B  B  A
invEquiv f = isoToEquiv (iso (invEq f) (fst f) (secEq f) (retEq f))

invEquivIdEquiv : (A : Type )  invEquiv (idEquiv A)  idEquiv A
invEquivIdEquiv _ = equivEq _ _ refl

compEquiv : A  B  B  C  A  C
compEquiv f g = isoToEquiv
                  (iso  x  g .fst (f .fst x))
                        x  invEq f (invEq g x))
                        y  (cong (g .fst) (retEq f (invEq g y)))  (retEq g y))
                        y  (cong (invEq f) (secEq g (f .fst y)))  (secEq f y)))

compEquivIdEquiv : {A B : Type } (e : A  B)  compEquiv (idEquiv A) e  e
compEquivIdEquiv e = equivEq _ _ refl

compIso :  { ℓ' ℓ''} {A : Type } {B : Type ℓ'} {C : Type ℓ''} 
            Iso A B  Iso B C  Iso A C
compIso i j = equivToIso (compEquiv (isoToEquiv i) (isoToEquiv j))

LiftEquiv : {A : Type }  A  Lift {i = } {j = ℓ'} A
LiftEquiv = isoToEquiv (iso lift lower  _  refl)  _  refl))

-- module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}  where
--   invEquivInvol : (f : A ≃ B) → invEquiv (invEquiv f) ≡ f
--   invEquivInvol f i .fst = fst f
--   invEquivInvol f i .snd = propIsEquiv (fst f) (snd (invEquiv (invEquiv f))) (snd f) i

PropEquiv→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A  B) (g : B  A)  (A  B)
PropEquiv→Equiv Aprop Bprop f g = isoToEquiv (iso f g  b  Bprop (f (g b)) b) λ a  Aprop (g (f a)) a)

homotopyNatural : {f g : A  B} (H :  a  f a  g a) {x y : A} (p : x  y) 
                  H x  cong g p  cong f p  H y
homotopyNatural H p = homotopyNatural' H p  □≡∙ _ _
  where
  homotopyNatural' : {f g : A  B} (H :  a  f a  g a) {x y : A} (p : x  y) 
                     H x  cong g p  cong f p  H y
  homotopyNatural' {f = f} {g = g} H {x} {y} p i j =
    hcomp  k  λ { (i = i0)  compPath-filler (H x) (cong g p) k j
                   ; (i = i1)  compPath'-filler (cong f p) (H y) k j
                   ; (j = i0)  cong f p (i  (~ k))
                   ; (j = i1)  cong g p (i  k) })
          (H (p i) j)

Hfa≡fHa :  {A : Type } (f : A  A)  (H :  a  f a  a)   a  H (f a)  cong f (H a)
Hfa≡fHa {A = A} f H a =
  H (f a)                          ≡⟨ rUnit (H (f a)) 
  H (f a)  refl                   ≡⟨ cong (_∙_ (H (f a))) (sym (rCancel (H a))) 
  H (f a)  H a  sym (H a)        ≡⟨ assoc _ _ _ 
  (H (f a)  H a)  sym (H a)      ≡⟨ cong  x   x  (sym (H a))) (homotopyNatural H (H a)) 
  (cong f (H a)  H a)  sym (H a) ≡⟨ sym (assoc _ _ _) 
  cong f (H a)  H a  sym (H a)   ≡⟨ cong (_∙_ (cong f (H a))) (rCancel _) 
  cong f (H a)  refl              ≡⟨ sym (rUnit _) 
  cong f (H a) 

equivPi
  : ∀{F : A  Set } {G : A  Set ℓ'}
   ((x : A)  F x  G x)  (((x : A)  F x)  ((x : A)  G x))
equivPi k .fst f x = k x .fst (f x)
equivPi k .snd .equiv-proof f
  .fst .fst x = equivCtr (k x) (f x) .fst
equivPi k .snd .equiv-proof f
  .fst .snd i x = equivCtr (k x) (f x) .snd i
equivPi k .snd .equiv-proof f
  .snd (g , p) i .fst x = equivCtrPath (k x) (f x) (g x , λ j  p j x) i .fst
equivPi k .snd .equiv-proof f
  .snd (g , p) i .snd j x = equivCtrPath (k x) (f x) (g x , λ k  p k x) i .snd j