\begin{code}
{-# OPTIONS --cubical --safe #-}

module Snippets.Equivalence where

open import Level
open import Data.Sigma
open import HLevels
open import Cubical.Foundations.Equiv using (fiber)

module _ {A : Type a} {B : Type b} where
  isEquiv : (A  B)  Type _
\end{code}
%<*is-equiv-def>
\begin{code}
  isEquiv f =  y  isContr (fiber f y)
\end{code}
%</is-equiv-def>
\begin{code}
_≃_ : Type a  Type b  Type _
\end{code}
%<*equiv-def>
\begin{code}
A  B = Σ[ f  (A  B) ] isEquiv f
\end{code}
%</equiv-def>