{-

Set quotients:

-}

{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetQuotients.Properties where

open import Cubical.HITs.SetQuotients.Base

open import Cubical.Core.Everything

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HAEquiv
open import Cubical.Foundations.Univalence

open import Cubical.Data.Nat
open import Cubical.Data.Sigma

open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base

open import Cubical.HITs.PropositionalTruncation
open import Cubical.HITs.SetTruncation

-- Type quotients

private
  variable
     ℓ' ℓ'' : Level
    A : Type 
    R : A  A  Type ℓ'
    B : A / R  Type ℓ''

elimEq/ : (Bprop : (x : A / R )  isProp (B x))
          {x y : A / R}
          (eq : x  y)
          (bx : B x)
          (by : B y) 
          PathP  i  B (eq i)) bx by
elimEq/ {B = B} Bprop {x = x} =
  J  y eq   bx by  PathP  i  B (eq i)) bx by)  bx by  Bprop x bx by)


elimSetQuotientsProp : ((x : A / R )  isProp (B x)) 
                       (f : (a : A)  B ( [ a ])) 
                       (x : A / R)  B x
elimSetQuotientsProp Bprop f [ x ] = f x
elimSetQuotientsProp Bprop f (squash/ x y p q i j) =
  isOfHLevel→isOfHLevelDep 2  x  isProp→isSet (Bprop x))
              (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
    where
    g = elimSetQuotientsProp Bprop f
elimSetQuotientsProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i

-- lemma 6.10.2 in hott book
-- TODO: defined truncated Sigma as ∃
[]surjective : (x : A / R)   Σ[ a  A ] [ a ]  x 
[]surjective = elimSetQuotientsProp  x  squash)  a   a , refl )

elimSetQuotients : {B : A / R  Type } 
                   (Bset : (x : A / R)  isSet (B x)) 
                   (f : (a : A)  (B [ a ])) 
                   (feq : (a b : A) (r : R a b) 
                          PathP  i  B (eq/ a b r i)) (f a) (f b)) 
                   (x : A / R)  B x
elimSetQuotients Bset f feq [ a ] = f a
elimSetQuotients Bset f feq (eq/ a b r i) = feq a b r i
elimSetQuotients Bset f feq (squash/ x y p q i j) =
  isOfHLevel→isOfHLevelDep 2 Bset
              (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
    where
      g = elimSetQuotients Bset f feq


setQuotUniversal : {B : Type } (Bset : isSet B) 
                   (A / R  B)  (Σ[ f  (A  B) ] ((a b : A)  R a b  f a  f b))
setQuotUniversal Bset = isoToEquiv (iso intro elim elimRightInv elimLeftInv)
  where
  intro = λ g    a  g [ a ]) , λ a b r i  g (eq/ a b r i)
  elim = λ h  elimSetQuotients  x  Bset) (fst h) (snd h)

  elimRightInv :  h  intro (elim h)  h
  elimRightInv h = refl

  elimLeftInv :  g  elim (intro g)  g
  elimLeftInv = λ g  funExt  x  elimPropTrunc {P = λ sur  elim (intro g) x  g x}
     sur  Bset (elim (intro g) x) (g x))
     sur  cong (elim (intro g)) (sym (snd sur))  (cong g (snd sur))) ([]surjective x)
    )

open BinaryRelation

effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A)  [ a ]  [ b ]  R a b
effective {A = A} {R = R} Rprop (EquivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _)
  where
    helper : A / R  hProp _
    helper = elimSetQuotients  _  isSetHProp)  c  (R a c , Rprop a c))
                               c d cd  ΣProp≡  _  isPropIsProp)
                                                 (ua (PropEquiv→Equiv (Rprop a c) (Rprop a d)
                                                                       ac  R/trans _ _ _ ac cd)  ad  R/trans _ _ _ ad (R/sym _ _ cd)))))

    aa≡ab : R a a  R a b
    aa≡ab i = fst (helper (p i))

isEquivRel→isEffective : isPropValued R  isEquivRel R  isEffective R
isEquivRel→isEffective {R = R} Rprop Req a b = isoToEquiv (iso intro elim intro-elim elim-intro)
  where
    intro : [ a ]  [ b ]  R a b
    intro = effective Rprop Req a b

    elim : R a b  [ a ]  [ b ]
    elim = eq/ a b

    intro-elim :  x  intro (elim x)  x
    intro-elim ab = Rprop a b _ _

    elim-intro :  x  elim (intro x)  x
    elim-intro eq = squash/ _ _ _ _

discreteSetQuotients : Discrete A  isPropValued R  isEquivRel R  (∀ a₀ a₁  Dec (R a₀ a₁))  Discrete (A / R)
discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec =
 elimSetQuotients ((λ a₀  isSetPi  a₁  isProp→isSet (isPropDec (squash/ a₀ a₁)))))
                  discreteSetQuotients' discreteSetQuotients'-eq
  where
    discreteSetQuotients' : (a : A) (y : A / R)  Dec ([ a ]  y)
    discreteSetQuotients' a₀ = elimSetQuotients ((λ a₁  isProp→isSet (isPropDec (squash/ [ a₀ ] a₁)))) dis dis-eq
      where
        dis : (a₁ : A)  Dec ([ a₀ ]  [ a₁ ])
        dis a₁ with Rdec a₀ a₁
        ... | (yes p) = yes (eq/ a₀ a₁ p)
        ... | (no ¬p) = no λ eq  ¬p (effective Rprop Req a₀ a₁ eq )

        dis-eq : (a b : A) (r : R a b) 
          PathP  i  Dec ([ a₀ ]  eq/ a b r i)) (dis a) (dis b)
        dis-eq a b ab = J  b ab   k  PathP  i  Dec ([ a₀ ]  ab i)) (dis a) k)
                           k  isPropDec (squash/ _ _) _  _) (eq/ a b ab) (dis b)

    discreteSetQuotients'-eq : (a b : A) (r : R a b) 
      PathP  i  (y : A / R)  Dec (eq/ a b r i  y))
            (discreteSetQuotients' a) (discreteSetQuotients' b)
    discreteSetQuotients'-eq a b ab =
      J  b ab   k  PathP  i  (y : A / R)  Dec (ab i  y))
                              (discreteSetQuotients' a) k)
         k  funExt  x  isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b)