\begin{code}
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Categories where
open import Prelude
open import Cubical.Foundations.HLevels
\end{code}
%<*precategory>
\begin{code}
record PreCategory ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where
field
Ob : Type ℓ₁
Hom : Ob → Ob → Type ℓ₂
Id : ∀ {X} → Hom X X
Comp : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z
assoc-Comp : ∀ {W X Y Z}
(f : Hom Y Z)
(g : Hom X Y)
(h : Hom W X) →
Comp f (Comp g h) ≡ Comp (Comp f g) h
Comp-Id : ∀ {X Y} (f : Hom X Y) → Comp f Id ≡ f
Id-Comp : ∀ {X Y} (f : Hom X Y) → Comp Id f ≡ f
Hom-Set : ∀ {X Y} → isSet (Hom X Y)
\end{code}
%</precategory>
\begin{code}
infixr 0 _⟶_
\end{code}
%<*morph-arrow>
\begin{code}
_⟶_ = Hom
\end{code}
%</morph-arrow>
\begin{code}
infixl 0 _⟵_
_⟵_ = flip Hom
infixr 9 _·_
_·_ = Comp
variable
X Y Z : Ob
infix 4 _≅_
_≅_ : Ob → Ob → Type _
\end{code}
%<*isomorphism>
\begin{code}
Isomorphism : (X ⟶ Y) → Type ℓ₂
Isomorphism {X} {Y} f = Σ[ g ⦂ Y ⟶ X ] ((g · f ≡ Id) × (f · g ≡ Id))
X ≅ Y = Σ (X ⟶ Y) Isomorphism
\end{code}
%</isomorphism>
\begin{code}
Domain : (X ⟶ Y) → Ob
Domain {X} {Y} _ = X
Codomain : (X ⟶ Y) → Ob
Codomain {X} {Y} _ = Y
module _ {X Y : Ob} where
Monic : (X ⟶ Y) → Type _
Monic f = ∀ {Z} → (g₁ g₂ : Z ⟶ X) → f · g₁ ≡ f · g₂ → g₁ ≡ g₂
Epic : (X ⟶ Y) → Type _
Epic f = ∀ {Z} → (g₁ g₂ : Y ⟶ Z) → g₁ · f ≡ g₂ · f → g₁ ≡ g₂
IsInitial : Ob → Type _
IsInitial I = ∀ {X} → isContr (I ⟶ X)
IsTerminal : Ob → Type _
IsTerminal T = ∀ {X} → isContr (X ⟶ T)
Initial = ∃ IsInitial
Terminal = ∃ IsTerminal
refl-≅ : X ≅ X
refl-≅ .fst = Id
refl-≅ .snd .fst = Id
refl-≅ .snd .snd .fst = Comp-Id Id
refl-≅ .snd .snd .snd = Comp-Id Id
sym-≅ : X ≅ Y → Y ≅ X
sym-≅ X≅Y .fst = X≅Y .snd .fst
sym-≅ X≅Y .snd .fst = X≅Y .fst
sym-≅ X≅Y .snd .snd .fst = X≅Y .snd .snd .snd
sym-≅ X≅Y .snd .snd .snd = X≅Y .snd .snd .fst
open import Path.Reasoning
trans-≅ : X ≅ Y → Y ≅ Z → X ≅ Z
trans-≅ X≅Y Y≅Z .fst = Y≅Z .fst · X≅Y .fst
trans-≅ X≅Y Y≅Z .snd .fst = X≅Y .snd .fst · Y≅Z .snd .fst
trans-≅ X≅Y Y≅Z .snd .snd .fst =
(X≅Y .snd .fst · Y≅Z .snd .fst) · (Y≅Z .fst · X≅Y .fst) ≡⟨ assoc-Comp _ _ _ ⟩
((X≅Y .snd .fst · Y≅Z .snd .fst) · Y≅Z .fst) · X≅Y .fst ≡˘⟨ cong (_· X≅Y .fst) (assoc-Comp _ _ _) ⟩
(X≅Y .snd .fst · (Y≅Z .snd .fst · Y≅Z .fst)) · X≅Y .fst ≡⟨ cong (λ yz → (X≅Y .snd .fst · yz) · X≅Y .fst) (Y≅Z .snd .snd .fst) ⟩
(X≅Y .snd .fst · Id) · X≅Y .fst ≡⟨ cong (_· X≅Y .fst) (Comp-Id (X≅Y .snd .fst)) ⟩
X≅Y .snd .fst · X≅Y .fst ≡⟨ X≅Y .snd .snd .fst ⟩
Id ∎
trans-≅ X≅Y Y≅Z .snd .snd .snd =
(Y≅Z .fst · X≅Y .fst) · (X≅Y .snd .fst · Y≅Z .snd .fst) ≡⟨ assoc-Comp _ _ _ ⟩
((Y≅Z .fst · X≅Y .fst) · X≅Y .snd .fst) · Y≅Z .snd .fst ≡˘⟨ cong (_· Y≅Z .snd .fst) (assoc-Comp _ _ _) ⟩
(Y≅Z .fst · (X≅Y .fst · X≅Y .snd .fst)) · Y≅Z .snd .fst ≡⟨ cong (λ xy → (Y≅Z .fst · xy) · Y≅Z .snd .fst) (X≅Y .snd .snd .snd) ⟩
(Y≅Z .fst · Id) · Y≅Z .snd .fst ≡⟨ cong (_· Y≅Z .snd .fst) (Comp-Id _) ⟩
Y≅Z .fst · Y≅Z .snd .fst ≡⟨ Y≅Z .snd .snd .snd ⟩
Id ∎
idToIso : X ≡ Y → X ≅ Y
idToIso {X} {Y} X≡Y = subst (X ≅_) X≡Y refl-≅
≅-set : isSet (X ≅ Y)
≅-set = isOfHLevelΣ 2 Hom-Set
λ _ → isOfHLevelΣ 2 Hom-Set
λ _ → isOfHLevelΣ 2 (hLevelSuc 2 (Hom _ _) Hom-Set _ _)
λ _ → hLevelSuc 2 (Hom _ _) Hom-Set _ _
open import Cubical.Foundations.Transport
record Category ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where
field
preCategory : PreCategory ℓ₁ ℓ₂
open PreCategory preCategory public
field
\end{code}
%<*cat-univalence>
\begin{code}
univalent : {X Y : Ob} → (X ≡ Y) ≃ (X ≅ Y)
\end{code}
%</cat-univalence>
\begin{code}
module _ {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where
open Category C
_[_,_] : Ob → Ob → Type ℓ₂
_[_,_] = Hom
{-# INLINE _[_,_] #-}
_[_∘_] : (Y ⟶ Z) → (X ⟶ Y) → (X ⟶ Z)
_[_∘_] = Comp
{-# INLINE _[_∘_] #-}
\end{code}