\begin{code}
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Cardinality.Finite.SplitEnumerable where
open import Prelude
open import Container
open import Data.Fin
open import Data.Sigma.Properties
open import Function.Surjective.Properties
open import Data.Fin.Properties
import Cardinality.Finite.SplitEnumerable.Container as ℒ
import Cardinality.Finite.SplitEnumerable.Inductive as 𝕃
open import Cardinality.Finite.SplitEnumerable.Isomorphism
open import Data.Nat.Literals
open import Data.Fin.Literals
open import Literals.Number
private
variable
u : Level
U : A → Type u
module _ {a} {A : Type a} where
open ℒ
open import Container.List
open import Container.Membership (ℕ , Fin)
open import Relation.Binary.Equivalence.Reasoning (⇔-equiv {a})
\end{code}
%<*split-enum-is-split-surj-short>
\begin{code}
split-enum-is-split-surj : ℰ! A ⇔ Σ[ n ⦂ ℕ ] (Fin n ↠! A)
split-enum-is-split-surj = reassoc
\end{code}
%</split-enum-is-split-surj-short>
\begin{code}
ℰ!⇔Fin↠! :
\end{code}
%<*is-split-inj-type>
\begin{code}
ℰ! A ⇔ Σ[ n ⦂ ℕ ] (Fin n ↠! A)
\end{code}
%</is-split-inj-type>
\begin{code}
ℰ!⇔Fin↠! =
\end{code}
%<*is-split-inj>
\begin{code}
ℰ! A ≋⟨⟩
Σ[ xs ⦂ List A ] ((x : A) → x ∈ xs) ≋⟨⟩
Σ[ xs ⦂ List A ] ((x : A) → fiber (snd xs) x) ≋⟨⟩
Σ[ xs ⦂ List A ] SplitSurjective (snd xs) ≋⟨⟩
Σ[ xs ⦂ ⟦ ℕ , Fin ⟧ A ] SplitSurjective (snd xs) ≋⟨⟩
Σ[ xs ⦂ Σ[ n ⦂ ℕ ] (Fin n → A) ] SplitSurjective (snd xs) ≋⟨ reassoc ⟩
Σ[ n ⦂ ℕ ] Σ[ f ⦂ (Fin n → A) ] SplitSurjective f ≋⟨⟩
Σ[ n ⦂ ℕ ] (Fin n ↠! A) ∎
\end{code}
%</is-split-inj>
%<*split-is-discrete>
\begin{code}
ℰ!⇒Discrete : ℰ! A → Discrete A
ℰ!⇒Discrete = flip Discrete-distrib-surj discreteFin
∘ snd
∘ ℰ!⇔Fin↠! .fun
\end{code}
%</split-is-discrete>
\begin{code}
module _ where
open 𝕃
open import Data.List.Sugar hiding ([_])
open import Data.List.Syntax
open import Data.List.Membership
module BoolSlop where
\end{code}
%<*bool-slop>
\begin{code}
ℰ!⟨2⟩ : ℰ! Bool
ℰ!⟨2⟩ .fst = [ false , true , false ]
ℰ!⟨2⟩ .snd false = 0 , refl
ℰ!⟨2⟩ .snd true = 1 , refl
\end{code}
%</bool-slop>
\begin{code}
\end{code}
%<*bool-rev>
\begin{code}
ℰ!⟨2⟩′ : ℰ! Bool
ℰ!⟨2⟩′ .fst = [ true , false ]
ℰ!⟨2⟩′ .snd false = 1 , refl
ℰ!⟨2⟩′ .snd true = 0 , refl
\end{code}
%</bool-rev>
%<*bool-inst>
\begin{code}
ℰ!⟨2⟩ : ℰ! Bool
ℰ!⟨2⟩ .fst = [ false , true ]
ℰ!⟨2⟩ .snd false = 0 , refl
ℰ!⟨2⟩ .snd true = 1 , refl
\end{code}
%</bool-inst>
%<*top-bot-inst>
\begin{code}
ℰ!⟨⊤⟩ : ℰ! ⊤
ℰ!⟨⊤⟩ .fst = [ tt ]
ℰ!⟨⊤⟩ .snd _ = 0 , refl
ℰ!⟨⊥⟩ : ℰ! ⊥
ℰ!⟨⊥⟩ = [] , λ ()
\end{code}
%</top-bot-inst>
%<*sup-sigma>
\begin{code}
sup-Σ : List A →
((x : A) → List (U x)) →
List (Σ A U)
sup-Σ xs ys = do x ← xs
y ← ys x
[ x , y ]
\end{code}
%</sup-sigma>
\begin{code}
cov-Σ : (x : A)
→ (y : U x)
→ (xs : List A)
→ (ys : ∀ x → List (U x))
→ x ∈ xs
→ y ∈ ys x
→ (x , y) ∈ sup-Σ xs ys
cov-Σ xᵢ yᵢ (x ∷ xs) ys (fs n , x∈xs) y∈ys =
map (x ,_) (ys x) ++◇ cov-Σ xᵢ yᵢ xs ys (n , x∈xs) y∈ys
cov-Σ xᵢ yᵢ (x ∷ xs) ys (f0 , x∈xs) y∈ys =
subst (λ x′ → (xᵢ , yᵢ) ∈ sup-Σ (x′ ∷ xs) ys) (sym x∈xs)
(map (xᵢ ,_) (ys xᵢ) ◇++ cong-∈ (xᵢ ,_) (ys xᵢ) y∈ys)
\end{code}
%<*split-enum-sigma>
\begin{code}
_|Σ|_ : ℰ! A → (∀ x → ℰ! (U x)) → ℰ! (Σ A U)
\end{code}
%</split-enum-sigma>
\begin{code}
(xs |Σ| ys) .fst = sup-Σ (xs .fst) (fst ∘ ys)
(xs |Σ| ys) .snd (x , y) = cov-Σ x y (xs .fst) (fst ∘ ys) (xs .snd x) (ys x .snd y)
ℰ!⟨Fin⟩ : ∀ {n} → ℰ! (Fin n)
ℰ!⟨Fin⟩ .fst = tabulate _ id
ℰ!⟨Fin⟩ .snd = fin∈tabulate id
_|×|_ : ℰ! A → ℰ! B → ℰ! (A × B)
xs |×| ys = xs |Σ| const ys
_|⊎|_ : ℰ! A → ℰ! B → ℰ! (A ⊎ B)
(xs |⊎| ys) .fst = map inl (xs .fst) ++ map inr (ys .fst)
(xs |⊎| ys) .snd (inl x) = map inl (xs .fst) ◇++ cong-∈ inl (xs .fst) (xs .snd x)
(xs |⊎| ys) .snd (inr y) = map inl (xs .fst) ++◇ cong-∈ inr (ys .fst) (ys .snd y)
_|+|_ : ℰ! A → ℰ! B → ℰ! (Σ[ t ⦂ Bool ] (if t then A else B))
xs |+| ys = ℰ!⟨2⟩ |Σ| bool ys xs
module TupleUniverseMonomorphic where
open import Data.Tuple.UniverseMonomorphic
ℰ!⟨Tuple⟩ : ∀ {n} {U : Fin n → Type₀} → (∀ i → ℰ! (U i)) → ℰ! (Tuple n U)
ℰ!⟨Tuple⟩ {n = zero} f = (_ ∷ []) , λ _ → f0 , refl
ℰ!⟨Tuple⟩ {n = suc n} f = f f0 |×| ℰ!⟨Tuple⟩ (f ∘ fs)
open import Data.Tuple
ℰ!⟨Tuple⟩ : ∀ {n u} {U : Lift a (Fin n) → Type u} → (∀ i → ℰ! (U i)) → ℰ! (Tuple n U)
ℰ!⟨Tuple⟩ {n = zero} f = (_ ∷ []) , λ _ → f0 , refl
ℰ!⟨Tuple⟩ {n = suc n} f = f (lift f0) |×| ℰ!⟨Tuple⟩ (f ∘ lift ∘ fs ∘ lower)
ℰ!⟨Lift⟩ : ℰ! A → ℰ! (Lift b A)
ℰ!⟨Lift⟩ xs .fst = map lift (xs .fst)
ℰ!⟨Lift⟩ xs .snd x = cong-∈ lift (xs .fst) (xs .snd (x .lower))
ℰ!⟨≡⟩ : (x y : A) → ℰ! A → ℰ! (x ≡ y)
ℰ!⟨≡⟩ x y e with ℰ!⇒Discrete (𝕃⇔ℒ⟨ℰ!⟩ .fun e) x y
ℰ!⟨≡⟩ x y e | yes p = (p ∷ []) , λ q → (f0 , Discrete→isSet (ℰ!⇒Discrete (𝕃⇔ℒ⟨ℰ!⟩ .fun e)) x y p q)
ℰ!⟨≡⟩ x y e | no ¬p = [] , (⊥-elim ∘ ¬p)
open import Data.List.Filter
open import Cardinality.Finite.SplitEnumerable.Inductive
module _ {p} {P : A → Type p} where
\end{code}
%<*subobject>
\begin{code}
filter-subobject :
(∀ x → isProp (P x)) →
(∀ x → Dec (P x)) →
ℰ! A →
ℰ! (Σ[ x ⦂ A ] P x)
\end{code}
%</subobject>
\begin{code}
filter-subobject isPropP P? xs .fst = filter P? (xs .fst)
filter-subobject isPropP P? xs .snd (x , v) = filter-preserves isPropP P? (xs .fst) x v (xs .snd x)
\end{code}