\begin{code} {-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.Membership where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def private variable p : Level infixr 5 _∈_ _∈_ : {A : Type a} → A → 𝒦 A → Type a x ∈ xs = ◇ (_≡ x) xs \end{code}