{-# OPTIONS --without-K --safe #-} module DepthComonads.Sigma where open import Agda.Builtin.Sigma using (Σ; _,_; fst; snd) public open import DepthComonads.Level open import Cubical.Data.Sigma using (Σ≡Prop; ΣPathP; PathPΣ) public infixr 4.5 ∃-syntax ∃-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃-syntax {A = A} = Σ A syntax ∃-syntax (λ x → e) = ∃ x × e infixr 4.5 Σ⦂-syntax Σ⦂-syntax : (A : Type a) (B : A → Type b) → Type (a ℓ⊔ b) Σ⦂-syntax = Σ syntax Σ⦂-syntax t (λ x → e) = Σ[ x ⦂ t ] × e infixr 4.5 _×_ _×_ : (A : Type a) → (B : Type b) → Type (a ℓ⊔ b) A × B = Σ A λ _ → B curry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) {-# INLINE curry #-} uncurry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y {-# INLINE uncurry #-} map-Σ : ∀ {p q} {P : A → Type p} {Q : B → Type q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map-Σ f g (x , y) = f x , g y {-# INLINE map-Σ #-} map₁ : (A → B) → A × C → B × C map₁ f = map-Σ f (λ x → x) {-# INLINE map₁ #-} map₁-Σ : ∀ {A : Type a} {B : Type b} {C : B → Type b} → (f : A → B) → Σ A (λ x → C (f x)) → Σ B C map₁-Σ f (x , y) = f x , y {-# INLINE map₁-Σ #-} map₂ : ∀ {A : Type a} {B : A → Type b} {C : A → Type c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f = map-Σ (λ x → x) f {-# INLINE map₂ #-}