{-# OPTIONS --safe #-}

Properties of nullary relations, i.e. structures on types.

Includes several results from [Notions of Anonymous Existence in Martin-Löf Type Theory](https://lmcs.episciences.org/3217)
by Altenkirch, Coquand, Escardo, Kraus.

module Cubical.Relation.Nullary.Properties where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Functions.Fixpoint

open import Cubical.Data.Empty as 

open import Cubical.Relation.Nullary.Base
open import Cubical.HITs.PropositionalTruncation.Base

     : Level
    A : Type 

IsoPresDiscrete :  { ℓ'}{A : Type } {B : Type ℓ'}  Iso A B
                Discrete A  Discrete B
IsoPresDiscrete e dA x y with dA (Iso.inv e x) (Iso.inv e y)
... | yes p = subst Dec  i  Iso.rightInv e x i  Iso.rightInv e y i)
                        (yes (cong (Iso.fun e) p))
... | no p = subst Dec  i  Iso.rightInv e x i  Iso.rightInv e y i)
                   (no λ q  p (sym (Iso.leftInv e (Iso.inv e x))
                     ∙∙ cong (Iso.inv e) q
                     ∙∙ Iso.leftInv e (Iso.inv e y)))

isProp¬ : (A : Type )  isProp (¬ A)
isProp¬ A p q i x = isProp⊥ (p x) (q x) i

Stable¬ : Stable (¬ A)
Stable¬ ¬¬¬a a = ¬¬¬a ¬¬a
  ¬¬a = λ ¬a  ¬a a

fromYes : A  Dec A  A
fromYes _ (yes a) = a
fromYes a (no _) = a

discreteDec : (Adis : Discrete A)  Discrete (Dec A)
discreteDec Adis (yes p) (yes p') = decideYes (Adis p p') -- TODO: monad would simply stuff
    decideYes : Dec (p  p')  Dec (yes p  yes p')
    decideYes (yes eq) = yes (cong yes eq)
    decideYes (no ¬eq) = no λ eq  ¬eq (cong (fromYes p) eq)
discreteDec Adis (yes p) (no ¬p) = ⊥.rec (¬p p)
discreteDec Adis (no ¬p) (yes p) = ⊥.rec (¬p p)
discreteDec {A = A} Adis (no ¬p) (no ¬p') = yes (cong no (isProp¬ A ¬p ¬p'))

isPropDec : (Aprop : isProp A)  isProp (Dec A)
isPropDec Aprop (yes a) (yes a') = cong yes (Aprop a a')
isPropDec Aprop (yes a) (no ¬a) = ⊥.rec (¬a a)
isPropDec Aprop (no ¬a) (yes a) = ⊥.rec (¬a a)
isPropDec {A = A} Aprop (no ¬a) (no ¬a') = cong no (isProp¬ A ¬a ¬a')

mapDec :  {B : Type }  (A  B)  (¬ A  ¬ B)  Dec A  Dec B
mapDec f _ (yes p) = yes (f p)
mapDec _ f (no ¬p) = no (f ¬p)

-- we have the following implications
-- X ── ∣_∣ ─→ ∥ X ∥
-- ∥ X ∥ ── populatedBy ─→ ⟪ X ⟫
-- ⟪ X ⟫ ── notEmptyPopulated ─→ NonEmpty X

-- reexport propositional truncation for uniformity
open Cubical.HITs.PropositionalTruncation.Base
  using (∣_∣) public

populatedBy :  A    A 
populatedBy {A = A} a (f , fIsConst) = h a where
  h :  A   Fixpoint f
  h  a  = f a , fIsConst (f a) a
  h (squash a b i) = 2-Constant→isPropFixpoint f fIsConst (h a) (h b) i

notEmptyPopulated :  A   NonEmpty A
notEmptyPopulated {A = A} pop u = u (fixpoint (pop (h , hIsConst))) where
  h : A  A
  h a = ⊥.elim (u a)
  hIsConst :  x y  h x  h y
  hIsConst x y i = ⊥.elim (isProp⊥ (u x) (u y) i)

-- these implications induce the following for different kinds of stability, gradually weakening the assumption
Dec→Stable : Dec A  Stable A
Dec→Stable (yes x) = λ _  x
Dec→Stable (no x) = λ f  ⊥.elim (f x)

Stable→PStable : Stable A  PStable A
Stable→PStable st = st  notEmptyPopulated

PStable→SplitSupport : PStable A  SplitSupport A
PStable→SplitSupport pst = pst  populatedBy

-- Although SplitSupport and Collapsible are not properties, their path versions, HSeparated and Collapsible≡, are.
-- Nevertheless they are logically equivalent
SplitSupport→Collapsible : SplitSupport A  Collapsible A
SplitSupport→Collapsible {A = A} hst = h , hIsConst where
  h : A  A
  h p = hst  p 
  hIsConst : 2-Constant h
  hIsConst p q i = hst (squash  p   q  i)

Collapsible→SplitSupport : Collapsible A  SplitSupport A
Collapsible→SplitSupport f x = fixpoint (populatedBy x f)

HSeparated→Collapsible≡ : HSeparated A  Collapsible≡ A
HSeparated→Collapsible≡ hst x y = SplitSupport→Collapsible (hst x y)

Collapsible≡→HSeparated : Collapsible≡ A  HSeparated A
Collapsible≡→HSeparated col x y = Collapsible→SplitSupport (col x y)

-- stability of path space under truncation or path collapsability are necessary and sufficient properties
-- for a a type to be a set.
Collapsible≡→isSet : Collapsible≡ A  isSet A
Collapsible≡→isSet {A = A} col a b p q = p≡q where
  f : (x : A)  a  x  a  x
  f x = col a x .fst
  fIsConst : (x : A)  (p q : a  x)  f x p  f x q
  fIsConst x = col a x .snd
  rem : (p : a  b)  PathP  i  a  p i) (f a refl) (f b p)
  rem p j = f (p j)  i  p (i  j))
  p≡q : p  q
  p≡q j i = hcomp  k  λ { (i = i0)  f a refl k
                           ; (i = i1)  fIsConst b p q j k
                           ; (j = i0)  rem p i k
                           ; (j = i1)  rem q i k }) a

HSeparated→isSet : HSeparated A  isSet A
HSeparated→isSet = Collapsible≡→isSet  HSeparated→Collapsible≡

isSet→HSeparated : isSet A  HSeparated A
isSet→HSeparated setA x y = extract where
  extract :  x  y   x  y
  extract  p  = p
  extract (squash p q i) = setA x y (extract p) (extract q) i

-- by the above more sufficient conditions to inhibit isSet A are given
PStable≡→HSeparated : PStable≡ A  HSeparated A
PStable≡→HSeparated pst x y = PStable→SplitSupport (pst x y)

PStable≡→isSet : PStable≡ A  isSet A
PStable≡→isSet = HSeparated→isSet  PStable≡→HSeparated

Separated→PStable≡ : Separated A  PStable≡ A
Separated→PStable≡ st x y = Stable→PStable (st x y)

Separated→isSet : Separated A  isSet A
Separated→isSet = PStable≡→isSet  Separated→PStable≡

-- Proof of Hedberg's theorem: a type with decidable equality is an h-set
Discrete→Separated : Discrete A  Separated A
Discrete→Separated d x y = Dec→Stable (d x y)

Discrete→isSet : Discrete A  isSet A
Discrete→isSet = Separated→isSet  Discrete→Separated