
Purely Functional Data Structures and
Monoids

Donnacha Oisı́n Kidney

May 9, 2020

1

Purely Functional Data Structures

Why DoWe Need Them?

Why do pure functional languages need a di�erent way to do data
structures? Why can’t we just use traditional algorithms from
imperative programming?

To answer that question, we’re going to look at a very simple
algorithm in an imperative language, and we’re going to see how
not to translate it into Haskell.

The mistake we make may well be one which you have made in past!

2

Why DoWe Need Them?

Why do pure functional languages need a di�erent way to do data
structures? Why can’t we just use traditional algorithms from
imperative programming?

To answer that question, we’re going to look at a very simple
algorithm in an imperative language, and we’re going to see how
not to translate it into Haskell.

The mistake we make may well be one which you have made in past!

2

Why DoWe Need Them?

Why do pure functional languages need a di�erent way to do data
structures? Why can’t we just use traditional algorithms from
imperative programming?

To answer that question, we’re going to look at a very simple
algorithm in an imperative language, and we’re going to see how
not to translate it into Haskell.

The mistake we make may well be one which you have made in past!

2

A Simple Imperative Algorithm

3

A Simple Imperative Algorithm

(in Python)

3

A Simple Imperative Algorithm

We’re going to write a func-
tion to create an array filled
with some ints.

3

A Simple Imperative Algorithm

It works like this.

>>> create_array_up_to(5)

[0,1,2,3,4]

3

A Simple Imperative Algorithm

This is its implementa-
tion.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

3

A Simple Imperative Algorithm

We first initialise an empty
array.

def create_array_up_to(n):

array = [] ⇐
for i in range(n):

array.append(i)

return array

3

A Simple Imperative Algorithm

And then we loop through
the numbers from 0 to
n-1.

def create_array_up_to(n):

array = []

for i in range(n): ⇐
array.append(i)

return array

3

A Simple Imperative Algorithm

We append each number on
to the array.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

3

A Simple Imperative Algorithm

And we return the array.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array ⇐

3

A Simple Imperative Algorithm

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

>>> create_array_up_to(5)

[0,1,2,3,4]

3

Trying to Translate it to Haskell

We’re going to run into a problem
with this line.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

The append function mutates array:
a�er calling append, the value of the
variable array changes.
array has di�erent values before and
a�er line 3.

We can’t do that in an immutable language! A variable’s value
cannot change from one line to the next in Haskell.

4

Trying to Translate it to Haskell

We’re going to run into a problem
with this line.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

The append function mutates array:
a�er calling append, the value of the
variable array changes.
array has di�erent values before and
a�er line 3.

We can’t do that in an immutable language! A variable’s value
cannot change from one line to the next in Haskell.

4

Trying to Translate it to Haskell

We’re going to run into a problem
with this line.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

The append function mutates array:
a�er calling append, the value of the
variable array changes.

array has di�erent values before and
a�er line 3.

We can’t do that in an immutable language! A variable’s value
cannot change from one line to the next in Haskell.

4

Trying to Translate it to Haskell

We’re going to run into a problem
with this line.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

The append function mutates array:
a�er calling append, the value of the
variable array changes.
array has di�erent values before and
a�er line 3.

We can’t do that in an immutable language! A variable’s value
cannot change from one line to the next in Haskell.

4

Trying to Translate it to Haskell

We’re going to run into a problem
with this line.

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i) ⇐
return array

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

The append function mutates array:
a�er calling append, the value of the
variable array changes.
array has di�erent values before and
a�er line 3.

We can’t do that in an immutable language! A variable’s value
cannot change from one line to the next in Haskell.

4

Append in Haskell

Instead of mutating variables, in Haskell when we want to change a
data structure we usually write a function which returns a new
variable equal to the old data structure with the change applied.

append :: Array a→ a→ Array a

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

main = do
print myArray
print myArray2

5

Append in Haskell

Instead of mutating variables, in Haskell when we want to change a
data structure we usually write a function which returns a new
variable equal to the old data structure with the change applied.

append :: Array a→ a→ Array a

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

main = do
print myArray
print myArray2

5

Append in Haskell

Instead of mutating variables, in Haskell when we want to change a
data structure we usually write a function which returns a new
variable equal to the old data structure with the change applied.

append :: Array a→ a→ Array a

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

main = do
print myArray
print myArray2

5

Translating it to Haskell

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Let’s look at the imperative algorithm, and try to translate it
bit-by-bit.

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

First we’ll need to write the type signature and skeleton of the
Haskell function.
What should the type be?

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

We tend not to use loops in functional languages, but this loop in
particular follows a very common pa�ern which has a name and
function in Haskell.
What is it?

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl

(λarray i → append array i)
emptyArray

[0 . . n− 1]

foldl is the function we need.
How would the output have di�ered if we used foldr instead?

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl

(λarray i → append array i)
emptyArray

[0 . . n− 1]

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl

(λarray i → append array i)

emptyArray
[0 . . n− 1]

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl

(λarray i → append array i)

emptyArray
[0 . . n− 1]

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Is there a shorter way to write this, that doesn’t include a lambda?

O(n) O(n2)

6

Translating it to Haskell

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

O(n) O(n2)

6

Why the performance di�erence?

6

Why the performance di�erence?

It comes down to the di�erent complexities of append .

Python Haskell
O(1) O(n)

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Both implementations call append n times, which causes the
di�erence in asymptotics.

7

Why the performance di�erence?

It comes down to the di�erent complexities of append .

Python Haskell
O(1) O(n)

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Both implementations call append n times, which causes the
di�erence in asymptotics.

7

Why the performance di�erence?

It comes down to the di�erent complexities of append .

Python Haskell
O(1) O(n)

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Both implementations call append n times, which causes the
di�erence in asymptotics.

7

Why the performance di�erence?

It comes down to the di�erent complexities of append .

Python Haskell
O(1) O(n)

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Both implementations call append n times, which causes the
di�erence in asymptotics.

7

Why the performance di�erence?

It comes down to the di�erent complexities of append .

Python Haskell
O(1) O(n)

def create_array_up_to(n):

array = []

for i in range(n):

array.append(i)

return array

createArrayUpTo :: Int→ Array Int
createArrayUpTo n =

foldl
(λarray i → append array i)
emptyArray
[0 . . n− 1]

Both implementations call append n times, which causes the
di�erence in asymptotics. 7

Forgetful Imperative Languages

Why is the imperative version so much more e�icient? Why is
append O(1)?

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

8

Forgetful Imperative Languages

Why is the imperative version so much more e�icient? Why is
append O(1)?

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

8

Forgetful Imperative Languages

Why is the imperative version so much more e�icient? Why is
append O(1)?

To run this code e�iciently, most
imperative interpreters will look for the
space next to 3 in memory, and put 4
there: an O(1) operation.

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

8

Forgetful Imperative Languages

Why is the imperative version so much more e�icient? Why is
append O(1)?

To run this code e�iciently, most
imperative interpreters will look for the
space next to 3 in memory, and put 4
there: an O(1) operation.

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

(Of course, sometimes the “space next to 3” will already be occupied!
There are clever algorithms you can use to handle this case.)

8

Forgetful Imperative Languages

Why is the imperative version so much more e�icient? Why is
append O(1)?

To run this code e�iciently, most
imperative interpreters will look for the
space next to 3 in memory, and put 4
there: an O(1) operation.

1 array = [1,2,3]

2 print(array)

3 array.append(4)

4 print(array)

Semantically, in an imperative language we are allowed to “forget”
the contents of array on line 1: [1,2,3]. That array has been
irreversibly replaced by [1,2,3,4].

8

Haskell doesn’t Forget

The Haskell version of append looks similar at first glance:

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

But we can’t edit the array [1, 2, 3] in memory, because myArray
still exists!

main = do
print myArray
print myArray2

>>> main

[1,2,3]

[1,2,3,4]

As a result, our only option is to copy, which is O(n).

9

Haskell doesn’t Forget

The Haskell version of append looks similar at first glance:

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

But we can’t edit the array [1, 2, 3] in memory, because myArray
still exists!

main = do
print myArray
print myArray2

>>> main

[1,2,3]

[1,2,3,4]

As a result, our only option is to copy, which is O(n).

9

Haskell doesn’t Forget

The Haskell version of append looks similar at first glance:

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

But we can’t edit the array [1, 2, 3] in memory, because myArray
still exists!

main = do
print myArray
print myArray2

>>> main

[1,2,3]

[1,2,3,4]

As a result, our only option is to copy, which is O(n).

9

Haskell doesn’t Forget

The Haskell version of append looks similar at first glance:

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

But we can’t edit the array [1, 2, 3] in memory, because myArray
still exists!

main = do
print myArray
print myArray2

>>> main

[1,2,3]

[1,2,3,4]

As a result, our only option is to copy, which is O(n).

9

Haskell doesn’t Forget

The Haskell version of append looks similar at first glance:

myArray = [1, 2, 3]
myArray2 = myArray ‘append‘ 4

But we can’t edit the array [1, 2, 3] in memory, because myArray
still exists!

main = do
print myArray
print myArray2

>>> main

[1,2,3]

[1,2,3,4]

As a result, our only option is to copy, which is O(n).

9

The Problem

In immutable languages, old versions of data structures have to be
kept around in case they’re looked at.

For arrays, this means we have to copy on every mutation. (i.e.:
append is O(n))

Solutions?

1. Find a way to disallow access of old versions of data structures.

2. Find a way to implement data structures that keep their old
versions e�iciently.

10

The Problem

In immutable languages, old versions of data structures have to be
kept around in case they’re looked at.

For arrays, this means we have to copy on every mutation. (i.e.:
append is O(n))

Solutions?

1. Find a way to disallow access of old versions of data structures.

2. Find a way to implement data structures that keep their old
versions e�iciently.

10

The Problem

In immutable languages, old versions of data structures have to be
kept around in case they’re looked at.

For arrays, this means we have to copy on every mutation. (i.e.:
append is O(n))

Solutions?

1. Find a way to disallow access of old versions of data structures.

2. Find a way to implement data structures that keep their old
versions e�iciently.

10

The Problem

In immutable languages, old versions of data structures have to be
kept around in case they’re looked at.

For arrays, this means we have to copy on every mutation. (i.e.:
append is O(n))

Solutions?

1. Find a way to disallow access of old versions of data structures.

2. Find a way to implement data structures that keep their old
versions e�iciently.

This approach is beyond the scope of this lecture!
However, for interested students: linear type systems can enforce
this property. You may have heard of Rust, a programming language
with linear types.

10

The Problem

In immutable languages, old versions of data structures have to be
kept around in case they’re looked at.

For arrays, this means we have to copy on every mutation. (i.e.:
append is O(n))

Solutions?

1. Find a way to disallow access of old versions of data structures.

2. Find a way to implement data structures that keep their old
versions e�iciently.

This is the approach we’re going to look at today.

10

Keeping History E�iciently

Consider the linked list.

1myArray = 2 3

0myArray2 = 1 2 30myArray2 = 1 2 3

2myArray3 = 32myArray3 = 3

11

Keeping History E�iciently

To “prepend” an element (i.e. append to front), you might assume
we would have to copy again:

1myArray = 2 3

0myArray2 = 1 2 3

0myArray2 = 1 2 3

2myArray3 = 32myArray3 = 3

11

Keeping History E�iciently

However, this is not the case.

1myArray = 2 3

0myArray2 = 1 2 3

0myArray2 = 1 2 3

2myArray3 = 32myArray3 = 3

11

Keeping History E�iciently

The same trick also works with deletion.

1myArray = 2 3

0myArray2 = 1 2 3

0myArray2 = 1 2 3

2myArray3 = 3

2myArray3 = 3

11

Keeping History E�iciently

1myArray = 2 3

0myArray2 = 1 2 3

0myArray2 = 1 2 3

2myArray3 = 3

2myArray3 = 3

11

Persistent Data Structures

Persistent Data Structure
A persistent data structure is a data structure which preserves all
versions of itself a�er modification.

An array is “persistent” in some sense, if
all operations are implemented by
copying. It just isn’t very e�icient.

A linked list is much be�er:
it can do persistent cons
and uncons in O(1) time.

Immutability
While the semantics of languages like Haskell necessitate this
property, they also facilitate it.

A�er several additions and deletions onto some linked structure
we will be le� with a real rat’s nest of pointers and references:
strong guarantees that no-one will mutate anything is essential
for that mess to be manageable.

12

Persistent Data Structures

Persistent Data Structure
A persistent data structure is a data structure which preserves all
versions of itself a�er modification.

An array is “persistent” in some sense, if
all operations are implemented by
copying. It just isn’t very e�icient.

A linked list is much be�er:
it can do persistent cons
and uncons in O(1) time.

Immutability
While the semantics of languages like Haskell necessitate this
property, they also facilitate it.

A�er several additions and deletions onto some linked structure
we will be le� with a real rat’s nest of pointers and references:
strong guarantees that no-one will mutate anything is essential
for that mess to be manageable.

12

Persistent Data Structures

Persistent Data Structure
A persistent data structure is a data structure which preserves all
versions of itself a�er modification.

An array is “persistent” in some sense, if
all operations are implemented by
copying. It just isn’t very e�icient.

A linked list is much be�er:
it can do persistent cons
and uncons in O(1) time.

Immutability
While the semantics of languages like Haskell necessitate this
property, they also facilitate it.

A�er several additions and deletions onto some linked structure
we will be le� with a real rat’s nest of pointers and references:
strong guarantees that no-one will mutate anything is essential
for that mess to be manageable.

12

Persistent Data Structures

Persistent Data Structure
A persistent data structure is a data structure which preserves all
versions of itself a�er modification.

An array is “persistent” in some sense, if
all operations are implemented by
copying. It just isn’t very e�icient.

A linked list is much be�er:
it can do persistent cons
and uncons in O(1) time.

Immutability
While the semantics of languages like Haskell necessitate this
property, they also facilitate it.

A�er several additions and deletions onto some linked structure
we will be le� with a real rat’s nest of pointers and references:
strong guarantees that no-one will mutate anything is essential
for that mess to be manageable.

12

?

As it happens, all of you have
already been using a persistent data structure!

Git is perhaps the most widely-used
persistent data structure in the world.

It works like a persistent file system: when you
make a change to a file, git remembers the old version, instead of
deleting it!

To do this e�iciently it doesn’t just store a new copy of the
repository whenever a change is made, it instead uses some of the
tricks and techniques we’re going to look at in the rest of this talk.

13

Git

As it happens, all of you have
already been using a persistent data structure!

Git is perhaps the most widely-used
persistent data structure in the world.

It works like a persistent file system: when you
make a change to a file, git remembers the old version, instead of
deleting it!

To do this e�iciently it doesn’t just store a new copy of the
repository whenever a change is made, it instead uses some of the
tricks and techniques we’re going to look at in the rest of this talk.

13

Git

As it happens, all of you have
already been using a persistent data structure!

Git is perhaps the most widely-used
persistent data structure in the world.

It works like a persistent file system: when you
make a change to a file, git remembers the old version, instead of
deleting it!

To do this e�iciently it doesn’t just store a new copy of the
repository whenever a change is made, it instead uses some of the
tricks and techniques we’re going to look at in the rest of this talk.

13

Git

As it happens, all of you have
already been using a persistent data structure!

Git is perhaps the most widely-used
persistent data structure in the world.

It works like a persistent file system: when you
make a change to a file, git remembers the old version, instead of
deleting it!

To do this e�iciently it doesn’t just store a new copy of the
repository whenever a change is made, it instead uses some of the
tricks and techniques we’re going to look at in the rest of this talk.

13

The Book

Chris Okasaki. Purely Functional
Data Structures.
Cambridge University Press,
June 1999
Much of the material in this
lecture comes directly from this
book.
It’s also on your reading list for
your algorithms course next year.

14

Arrays

While our linked list can replace a normal array for some
applications, in general it’s missing some of the key operations we
might want.

Indexing in particular is O(n) on a linked list but O(1) on an array.

We’re going to build a data structure which gets to O(log n)
indexing in a pure way.

15

Implementing a Functional
Algorithm: Merge Sort

Merge Sort

Merge sort is a classic divide-and-conquer algorithm.

It divides up a list into singleton lists, and then repeatedly merges
adjacent sublists until only one is le�.

16

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

17

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

2 6 10 7 8 1 9 3 4 5

17

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

17

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

2 6 7 10 1 8 3 9 4 5

17

Visualisation of Merge Sort

2 6 7 10 1 8 3 9 4 5

17

Visualisation of Merge Sort

2 6 7 10 1 8 3 9 4 5

2 6 7 10 1 3 8 9 4 5

17

Visualisation of Merge Sort

2 6 7 10 1 3 8 9 4 5

17

Visualisation of Merge Sort

2 6 7 10 1 3 8 9 4 5

1 2 3 6 7 8 9 10 4 5

17

Visualisation of Merge Sort

1 2 3 6 7 8 9 10 4 5

17

Visualisation of Merge Sort

1 2 3 6 7 8 9 10 4 5

1 2 3 4 5 6 7 8 9 10

17

Visualisation of Merge Sort

1 2 3 4 5 6 7 8 9 10

17

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

2 6 10 7 8 1 9 3 4 5

2 6 7 10 1 8 3 9 4 5

2 6 7 10 1 3 8 9 4 5

1 2 3 6 7 8 9 10 4 5

1 2 3 4 5 6 7 8 9 10

17

Just to demonstrate some of the complexity of the algorithm when
implemented imperatively, here it is in Python.

You do not need to understand the following slide!

18

Just to demonstrate some of the complexity of the algorithm when
implemented imperatively, here it is in Python.

You do not need to understand the following slide!

18

def merge_sort(arr):

lsz, tsz, acc = 1, len(arr), []

while lsz < tsz:

for ll in range(0, tsz-lsz, lsz*2):

lu, rl, ru = ll+lsz, ll+lsz, min(tsz, ll+lsz*2)

while ll < lu and rl < ru:

if arr[ll] <= arr[rl]:

acc.append(arr[ll])

ll += 1

else:

acc.append(arr[rl])

rl += 1

acc += arr[ll:lu] + arr[rl:ru]

acc += arr[len(acc):]

arr, lsz, acc = acc, lsz*2, []

return arr
19

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

How can we improve it?

Merge sort is actually an algorithm perfectly suited to a functional
implementation.

In translating it over to Haskell, we are going to make the following
improvements:

• We will abstract out some pa�erns, like the fold pa�ern.

• We will do away with index arithmetic, instead using
pa�ern-matching.

• We will avoid complex while conditions.

• We won’t mutate anything.

• We will add a healthy sprinkle of types.

Granted, all of these improvements could have been made to the
Python code, too.

20

Merge in Haskell

We’ll start with a function that merges two sorted lists.

merge :: Ord a⇒ [a]→ [a]→ [a]
merge [] ys = ys
merge xs [] = xs
merge (x : xs) (y : ys)
| x 6 y = x :merge xs (y : ys)
| otherwise = y :merge (x : xs) ys

>>> merge [1,8] [3,9]

[1,3,8,9]

21

Merge in Haskell

We’ll start with a function that merges two sorted lists.

merge :: Ord a⇒ [a]→ [a]→ [a]
merge [] ys = ys
merge xs [] = xs
merge (x : xs) (y : ys)
| x 6 y = x :merge xs (y : ys)
| otherwise = y :merge (x : xs) ys

>>> merge [1,8] [3,9]

[1,3,8,9]

21

Merge in Haskell

We’ll start with a function that merges two sorted lists.

merge :: Ord a⇒ [a]→ [a]→ [a]
merge [] ys = ys
merge xs [] = xs
merge (x : xs) (y : ys)
| x 6 y = x :merge xs (y : ys)
| otherwise = y :merge (x : xs) ys

>>> merge [1,8] [3,9]

[1,3,8,9]

21

Using the Merge to Sort

Next: how do we use this merge to sort a list?

We know how to combine 2
sorted lists, and that combine
function has an identity, so how
do we use it to combine n sorted
lists?

merge xs [] = xs

foldr?

22

Using the Merge to Sort

Next: how do we use this merge to sort a list?

We know how to combine 2
sorted lists, and that combine
function has an identity, so how
do we use it to combine n sorted
lists?

merge xs [] = xs

foldr?

22

Using the Merge to Sort

Next: how do we use this merge to sort a list?

We know how to combine 2
sorted lists, and that combine
function has an identity, so how
do we use it to combine n sorted
lists?

merge xs [] = xs

foldr?

22

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅
Merge sort crucially divides the work in a balanced way!

23

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅
Merge sort crucially divides the work in a balanced way!

23

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅
Merge sort crucially divides the work in a balanced way!

23

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅
Merge sort crucially divides the work in a balanced way!

23

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅

Merge sort crucially divides the work in a balanced way!

23

The Problem with foldr

sort :: Ord a⇒ [a]→ [a]
sort xs = foldr merge [] [[x] | x ← xs]

Unfortunately, this is
actually insertion sort!

merge [x] ys = insert x ys

The problem is that foldr is too unbalanced.

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅
Merge sort crucially divides the work in a balanced way!

23

Visualisation of Merge Sort

2 6 10 7 8 1 9 3 4 5

2 6 10 7 8 1 9 3 4 5

2 6 7 10 1 8 3 9 4 5

2 6 7 10 1 3 8 9 4 5

1 2 3 6 7 8 9 10 4 5

1 2 3 4 5 6 7 8 9 10

24

A More Balanced Fold

treeFold :: (a→ a→ a)→ [a]→ a
treeFold (⊕) [x] = x
treeFold (⊕) xs = treeFold (⊕) (pairMap xs)

where
pairMap (x1 : x2 : xs) = x1 ⊕ x2 : pairMap xs
pairMap xs = xs

This can be used quite similarly to how you might use foldl or foldr :

sum = treeFold (+)

(although we would probably change the definition a li�le to catch
the empty list, but we won’t look at that here)

The fundamental di�erence between this fold and, say, foldr is that
it’s balanced, which is extremely important for merge sort.

25

A More Balanced Fold

treeFold :: (a→ a→ a)→ [a]→ a
treeFold (⊕) [x] = x
treeFold (⊕) xs = treeFold (⊕) (pairMap xs)

where
pairMap (x1 : x2 : xs) = x1 ⊕ x2 : pairMap xs
pairMap xs = xs

This can be used quite similarly to how you might use foldl or foldr :

sum = treeFold (+)

(although we would probably change the definition a li�le to catch
the empty list, but we won’t look at that here)

The fundamental di�erence between this fold and, say, foldr is that
it’s balanced, which is extremely important for merge sort.

25

A More Balanced Fold

treeFold :: (a→ a→ a)→ [a]→ a
treeFold (⊕) [x] = x
treeFold (⊕) xs = treeFold (⊕) (pairMap xs)

where
pairMap (x1 : x2 : xs) = x1 ⊕ x2 : pairMap xs
pairMap xs = xs

This can be used quite similarly to how you might use foldl or foldr :

sum = treeFold (+)

(although we would probably change the definition a li�le to catch
the empty list, but we won’t look at that here)

The fundamental di�erence between this fold and, say, foldr is that
it’s balanced, which is extremely important for merge sort.

25

A More Balanced Fold

treeFold :: (a→ a→ a)→ [a]→ a
treeFold (⊕) [x] = x
treeFold (⊕) xs = treeFold (⊕) (pairMap xs)

where
pairMap (x1 : x2 : xs) = x1 ⊕ x2 : pairMap xs
pairMap xs = xs

This can be used quite similarly to how you might use foldl or foldr :

sum = treeFold (+)

(although we would probably change the definition a li�le to catch
the empty list, but we won’t look at that here)

The fundamental di�erence between this fold and, say, foldr is that
it’s balanced, which is extremely important for merge sort.

25

A More Balanced Fold

treeFold :: (a→ a→ a)→ [a]→ a
treeFold (⊕) [x] = x
treeFold (⊕) xs = treeFold (⊕) (pairMap xs)

where
pairMap (x1 : x2 : xs) = x1 ⊕ x2 : pairMap xs
pairMap xs = xs

This can be used quite similarly to how you might use foldl or foldr :

sum = treeFold (+)

(although we would probably change the definition a li�le to catch
the empty list, but we won’t look at that here)

The fundamental di�erence between this fold and, say, foldr is that
it’s balanced, which is extremely important for merge sort.

25

Visualisation of treeFold

treeFold (⊕) [1 . . 10] =
treeFold (⊕) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

1 2 3 4 5 6 7 8 9 10

26

Visualisation of treeFold

treeFold (⊕) [1 . . 10] =
treeFold (⊕) [1⊕ 2, 3⊕ 4, 5⊕ 6, 7⊕ 8, 9⊕ 10]

⊕

1 2

⊕

3 4

⊕

5 6

⊕

7 8

⊕

9 10

26

Visualisation of treeFold

treeFold (⊕) [1 . . 10] =
treeFold (⊕) [(1⊕ 2)⊕ (3⊕ 4), (5⊕ 6)⊕ (7⊕ 8), 9⊕ 10]

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

26

Visualisation of treeFold

treeFold (⊕) [1 . . 10] =
treeFold (⊕) [((1⊕ 2)⊕ (3⊕ 4))⊕ ((5⊕ 6)⊕ (7⊕ 8)), 9⊕ 10]

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

26

Visualisation of treeFold

treeFold (⊕) [1 . . 10] =
(((1⊕ 2)⊕ (3⊕ 4))⊕ ((5⊕ 6)⊕ (7⊕ 8)))⊕ (9⊕ 10)

⊕

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

26

Visualisation of foldr

Compare to foldr :

foldr (⊕) ∅ [1 . . 5] =
1⊕ (2⊕ (3⊕ (4⊕ (5⊕ ∅))))

⊕

1 ⊕

2 ⊕

3 ⊕

4 ⊕

5 ∅

27

Visualisation of Merge Sort in Haskell

treeFold merge [2, 6, 10, 7, 8, 1, 9, 3, 4, 5] =
⊕

⊕

⊕

⊕

[2] [6]

⊕

[10] [7]

⊕

⊕

[8] [1]

⊕

[9] [3]

⊕

[4] [5]

28

Visualisation of Merge Sort in Haskell

treeFold merge [2, 6, 10, 7, 8, 1, 9, 3, 4, 5] =
⊕

⊕

⊕

[2, 6] [7, 10]

⊕

[1, 8] [3, 9]

[4, 5]

28

Visualisation of Merge Sort in Haskell

treeFold merge [2, 6, 10, 7, 8, 1, 9, 3, 4, 5] =
⊕

⊕

[2, 6, 7, 10] [1, 3, 8, 9]

[4, 5]

28

Visualisation of Merge Sort in Haskell

treeFold merge [2, 6, 10, 7, 8, 1, 9, 3, 4, 5] =
⊕

[1, 2, 3, 6, 7, 8, 9, 10] [4, 5]

28

Visualisation of Merge Sort in Haskell

treeFold merge [2, 6, 10, 7, 8, 1, 9, 3, 4, 5] =

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

28

Sort Algorithm

sort :: Ord a⇒ [a]→ [a]
sort [] = []

sort xs = treeFold merge [[x] | x ← xs]

29

So Why Is This Algorithm Fast?

It’s down to the pa�ern of the fold itself.

Because it splits the input evenly, the full algorithm is O(n log n)
time.

If we had just used foldr , we would have defined insertion sort,
which is O(n2).

30

Monoids

Monoids

class Monoid a where
ε :: a
(•) :: a→ a→ a

Monoid
A monoid is a set with a neutral
element ε, and a binary operator
•, such that:

(x • y) • z = x • (y • z)
x • ε = x

ε • x = x

31

Examples of Monoids

• N, under either + or ×.

• Lists:

instance Monoid [a] where
ε = []

(•) = (++)

• Ordered lists, with merge.

32

Let’s Rewrite treeFold to use Monoids

treeFold :: Monoid a⇒ [a]→ a
treeFold [] = ε

treeFold [x] = x
treeFold xs = treeFold (pairMap xs)

where
pairMap (x1 : x2 : xs) = (x1 • x2) : pairMap xs
pairMap xs = xs

We can actually prove that this version returns the same results as
foldr , as long as the monoid laws are followed.

It just performs the fold in a more e�icient way.

33

We’ve already seen one monoid we can use this fold with: ordered
lists.

Another is floating-point numbers under summation. Using foldr or
foldl will give you O(n) error growth, whereas using treeFold will
give you O(log n).

34

Let’s Make It Incremental

treeFold currently processes the input in one big operation.

However, if we were able to process the input incrementally, with
useful intermediate results, there are some other applications we
can use the fold for.

35

A Binary Data Structure

We’re going to build a data structure based on the binary numbers.

For, say, 10 elements, we have the following binary number:
This number tells us how to arrange 10 elements into perfect trees.

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

36

A Binary Data Structure

We’re going to build a data structure based on the binary numbers.

For, say, 10 elements, we have the following binary number:

I O I O

This number tells us how to arrange 10 elements into perfect trees.

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

36

A Binary Data Structure

We’re going to build a data structure based on the binary numbers.

For, say, 10 elements, we have the following binary number:

I8O4I2O1

(With each bit annotated with its significance)

This number tells us how to arrange 10 elements into perfect trees.

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

36

A Binary Data Structure

We’re going to build a data structure based on the binary numbers.

For, say, 10 elements, we have the following binary number:

I8O4I2O1

This number tells us how to arrange 10 elements into perfect trees.

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

36

A Binary Data Structure

We’re going to build a data structure based on the binary numbers.

For, say, 10 elements, we have the following binary number:

I8O4I2O1

This number tells us how to arrange 10 elements into perfect trees.

⊕

⊕

⊕

1 2

⊕

3 4

⊕

⊕

5 6

⊕

7 8

⊕

9 10

36

The Incremental Type

We can write this as a datatype:

type Incremental a = [(Int, a)]

cons :: (a→ a→ a)→ a→ Incremental a→ Incremental a
cons f = go 0

where
go i x [] = [(i, x)]
go i x ((0, y) : ys) = (i + 1, f x y) : ys
go i x ((j , y) : ys) = (i, x) : (j − 1, y) : ys

run :: (a→ a→ a)→ Incremental a→ a
run f = foldr1 f ◦map snd

And we can even implement treeFold using it:

treeFold :: (a→ a→ a)→ [a]→ a
treeFold f = run f ◦ foldr (cons f) []

37

We can now use the function incrementally.

treeScanl f = map (run f) ◦ tail ◦ scanl (flip (cons f)) []
treeScanr f = map (run f) ◦ init ◦ scanr (cons f) []

We could, for instance, sort
all of the tails of a list
e�iciently in this way.
(although I’m not sure why
you’d want to!)

treeScanr merge
(map pure [2, 6, 1, 3, 4, 5]) ≡

[[1, 2, 3, 4, 5, 6]
, [1, 3, 4, 5, 6]
, [1, 3, 4, 5]
, [3, 4, 5]
, [4, 5]
, [5]]

A more practical use is to extract the k smallest elements from a list,
which can be achieved with a variant on this fold.

38

We can now use the function incrementally.

treeScanl f = map (run f) ◦ tail ◦ scanl (flip (cons f)) []
treeScanr f = map (run f) ◦ init ◦ scanr (cons f) []

We could, for instance, sort
all of the tails of a list
e�iciently in this way.
(although I’m not sure why
you’d want to!)

treeScanr merge
(map pure [2, 6, 1, 3, 4, 5]) ≡

[[1, 2, 3, 4, 5, 6]
, [1, 3, 4, 5, 6]
, [1, 3, 4, 5]
, [3, 4, 5]
, [4, 5]
, [5]]

A more practical use is to extract the k smallest elements from a list,
which can be achieved with a variant on this fold.

38

We can now use the function incrementally.

treeScanl f = map (run f) ◦ tail ◦ scanl (flip (cons f)) []
treeScanr f = map (run f) ◦ init ◦ scanr (cons f) []

We could, for instance, sort
all of the tails of a list
e�iciently in this way.
(although I’m not sure why
you’d want to!)

treeScanr merge
(map pure [2, 6, 1, 3, 4, 5]) ≡

[[1, 2, 3, 4, 5, 6]
, [1, 3, 4, 5, 6]
, [1, 3, 4, 5]
, [3, 4, 5]
, [4, 5]
, [5]]

A more practical use is to extract the k smallest elements from a list,
which can be achieved with a variant on this fold.

38

But, as we saw already, the only required element here is the
Monoid.

If we remember back to the (N, 0,+) monoid, we can build now a
collection which tracks the number of elements it has.

data Tree a
= Leaf {size :: Int, val :: a}
| Node {size :: Int, lchild :: Tree a, rchild :: Tree a}

leaf :: a→ Tree a
leaf x = Leaf 1 x

node :: Tree a→ Tree a→ Tree a
node xs ys = Node (size xs + size ys) xs ys

39

Not so useful, no, but remember that we have a way to build this
type incrementally, in a balanced way.

type Array a = Incremental (Tree a)

Insertion is O(log n):

insert :: a→ Array a→ Array a
insert x = cons node (leaf x)

fromList :: [a]→ Array a
fromList = foldr insert []

40

And finally lookup, the key feature missing from our persistent
implementation of arrays, is also O(log n):

lookupTree :: Int→ Tree a→ a
lookupTree (Leaf x) = x
lookupTree i (Node xs ys)
| i < size xs = lookupTree i xs
| otherwise = lookupTree (i − size xs) ys

lookup :: Int→ Array a→ Maybe a
lookup = flip (foldr f b)
where
b = Nothing
f (, x) xs i
| i < size x = Just (lookupTree i x)
| otherwise = xs (i − size x)

41

Finger Trees

So we have seen a number of techniques today:

• Using pointers and sharing to make a data structure persistent.

• Using monoids to describe folding operations.

• Using balanced folding operations to take an O(n) operation to
a O(log n) one. (in terms of time and other things like error
growth)

• Using a number-based data structure to incrementalise some of
those folds.

• Using that incremental structure to implement things like
lookup.

There is a single data structure which does pre�y much all of this,
and more: the Finger Tree.

42

Finger Trees

Ralf Hinze and Ross Paterson. Finger Trees: A Simple
General-purpose Data Structure.

Journal of Functional Programming, 16(2):197–217, 2006

A monoid-based tree-like structure, much like our “Incremental”
type.

However, much more general.

Supports insertion, deletion, but also concatenation.

Also our lookup function is more generally described by the “split”
operation.

All based around some monoid.

43

Uses for Finger Trees

Just by switching out the monoid for something else we can get an
almost entirely di�erent data structure.

• Priority �eues

• Search Trees

• Priority Search �eues (think: Dijkstra’s Algorithm)

• Prefix Sum Trees

• Array-like random-access lists: this is precisely what’s done in
Haskell’s Data.Sequence.

44

	Purely Functional Data Structures
	Implementing a Functional Algorithm: Merge Sort
	Monoids
	Let's Make It Incremental
	Finger Trees

