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Modeling Probability



How do we model stochastic and probabilistic processes in
programming languages?
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The Boy-Girl Paradox1

(apologies for the outdated language)

1. Mr. Jones has two children. The older child is a girl. What
is the probability that both children are girls?

2. Mr. Smith has two children. At least one of them is a boy.
What is the probability that both children are boys?

Is the answer to 2 1
3 or

1
2?

Part of the difficulty in the question is that it’s ambiguous: can
we use programming languages to lend some precision?

1Martin Gardner. The 2nd Scientific American Book of Mathematical Puzzles
& Diversions. University of Chicago Press ed. Chicago: University of Chicago
Press, 1987. isbn: 978-0-226-28253-4.
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Gardner originally wrote that the second question (perhaps
surprisingly) has the answer 1

3 . However, he later
acknowledged the question was ambiguous, and agreed that
certain interpretations could correctly conclude its answer was
1
2 .
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An Ad-Hoc Solution i

Using normal features built in to the language.

from random import randrange, choice

class Child:
def __init__(self):

self.gender = choice(['boy', 'girl'])
self.age = randrange(18)
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An Ad-Hoc Solution ii

from operator import attrgetter

def mr_jones():
child_1 = Child()
child_2 = Child()
eldest = max(child_1, child_2,

key=attrgetter('age'))
assert eldest.gender == 'girl'
return [child_1, child_2]
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An Ad-Hoc Solution iii

def mr_smith():
child_1 = Child()
child_2 = Child()
assert child_1.gender == 'boy' or \

child_2.gender == 'boy'
return [child_1, child_2]
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Unclear semantics

What contracts are guaranteed by probabilistic functions?
What does it mean exactly for a function to be probabilistic?
Why isn’t the following2 “random”?

int getRandomNumber()
{
return 4; // chosen by fair dice roll.

// guaranteed to be random.
}

2Randall Munroe. Xkcd: Random Number. en. Title text: RFC 1149.5 specifies
4 as the standard IEEE-vetted random number. Feb. 2007. url:
https://xkcd.com/221/ (visited on 07/06/2018).
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What about this?

children_1 = [Child(), Child()]
children_2 = [Child()] * 2

How can we describe the difference between children_1
and children_2?
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What about this?

children_1 = [Child(), Child()]
children_2 = [Child()] * 2
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Unclear Semantics

The first runs two random processes; the second only one. Both have
the same types, both look like they do the same thing. We need a
good way to describe the difference between them.



Underpowered

There are many more things we may want to do with
probability distributions.

What about expectations?

def expect(predicate, process, iterations=100):
success, tot = 0, 0
for _ in range(iterations):

try:
success += predicate(process())
tot += 1

except AssertionError:
pass

return success / tot
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This solution is both inefficient and inexact. Also, we may want to
express other attributes of probability distributions: independence,
for example.



The Ad-Hoc Solution

p_1 = expect(
lambda children: all(child.gender == 'girl'

for child in children),
mr_jones)

p_2 = expect(
lambda children: all(child.gender == 'boy'

for child in children),
mr_smith)

p_1 ≊
1
2

p_2 ≊
1
3

12



Monadic Modeling



A DSL

What we’re approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

• Why should we implement it? What is it useful for?
• How should we implement it? How can it be made
efficient?

• Can we glean any insights on the nature of probabilistic
computations from the language? Are there any
interesting symmetries?
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The Erwig And Kollmansberger Approach

First approach3:

newtype Dist a = Dist {runDist :: [(a,R)]}

A distribution is a list of possible events, each tagged with a
probability.

3Martin Erwig and Steve Kollmansberger. “Functional Pearls: Probabilistic
Functional Programming in Haskell”. In: Journal of Functional Programming
16.1 (2006), pp. 21–34. issn: 1469-7653, 0956-7968. doi:
10.1017/S0956796805005721. url: http://web.engr.
oregonstate.edu/~erwig/papers/abstracts.html%5C#JFP06a
(visited on 09/29/2016).
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This representation only works for discrete distributions
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We could (for example) encode a die as:

die :: Dist Integer
die = Dist [(1, 1

6), (2,
1
6), (3,

1
6), (4,

1
6), (5,

1
6), (6,

1
6)]
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This lets us encode (in the types) the difference between:

children_1 :: [Dist Child]
children_2 :: Dist [Child]
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As we will use this as a DSL, we need to define the language
features we used above:

def mr_smith():
child_1 = Child()
child_2 = Child()
assert child_1.gender == 'boy' or \

child_2.gender == 'boy'
return [child_1, child_2]

1. = (assignment)
2. assert
3. return
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Assignment i

Assignment expressions can be translated into lambda
expressions:

let x = e1 in e2
≡
(λx.e2) e1

In the context of a probabilistic language, e1 and e1 are
distributions. So what we need to define is application: this is
encapsulated by the “monadic bind”:

(>>=) :: Dist a→ (a→ Dist b)→ Dist b
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Assignment ii

For a distribution, what’s happening inside the λ is e1 given x.
Therefore, the resulting probability is the product of the outer
and inner probabilities.

xs>>= f = Dist [ (y, xp× yp)
| (x, xp)← runDist xs
, (y, yp)← runDist (f x)]

19



Assertion

Assertion is a kind of conditioning: given a statement about an
event, it either occurs or it doesn’t.

guard :: Bool→ Dist ()
guard True = Dist [((), 1)]
guard False = Dist [ ]

20



Return

Return is the “unit” value for a distribution; the certain event,
the unconditional distribution.

return :: a→ Dist a
return x = Dist [(x, 1)]
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Putting it all Together

mrSmith :: Dist [Child]
mrSmith = do
child1 ← child
child2 ← child
guard (gender child1 ≡ Boy ∨ gender child2 ≡ Boy)
return [child1, child2 ]

expect :: (a→ R)→ Dist a→ R
expect p xs = sum [p x×xp|(x,xp)←runDist xs]

sum [xp|( ,xp)←runDist xs]

probOf :: (a→ Bool)→ Dist a→ R
probOf p = expect (λx→ if p x then 1 else 0)

22



probOf (all ((≡) Girl ◦ gender)) mrJones ≡ 1
2

probOf (all ((≡) Boy ◦ gender)) mrSmith ≡ 1
3
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Alternative Interpreters

Once the semantics are described, different interpreters are
easy to swap in.
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Monty Hall i

data Decision = Decision {stick :: Bool
, switch :: Bool}

montyHall :: Dist Decision
montyHall = do
car ← uniform [1 . . 3]
choice1 ← uniform [1 . . 3]
let left = [door | door ← [1 . . 3],door ̸≡ choice1 ]

let open = head [door | door ← left,door ̸≡ car ]
let choice2 = head [door | door ← left,door ̸≡ open]
return (Decision {stick = car ≡ choice1

, switch = car ≡ choice2})

25



Monty Hall ii

While we can interpret it in the normal way to solve the
problem:

probOf stick montyHall ≡ 1
3

probOf switch montyHall ≡ 2
3

26



Monty Hall iii

We could alternatively draw a diagram of the process.
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1
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1
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10

Figure 1: AST from Monty Hall problem. 1 is a win, 0 is a loss. The
first column is what happens on a stick, the second is what happens
on a loss.

27



Theoretical Foundations



Stochastic Lambda Calculus

It is possible4 to give measure-theoretic meanings to the
operations described above.

M Jreturn xK (A) = {
1, if x ∈ A
0, otherwise

(1)

M Jd>>= kK (A) = ∫
X
M Jk(x)K (A)dM JdK (x) (2)

4Norman Ramsey and Avi Pfeffer. “Stochastic Lambda Calculus and Monads
of Probability Distributions”. In: 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. Vol. 37. ACM, 2002, pp. 154–165. url:
http://www.cs.tufts.edu/~nr/cs257/archive/norman-
ramsey/pmonad.pdf (visited on 09/29/2016).
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return is the Dirac measure
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The Giry Monad

Giry5 gave a categorical interpretation of probability theory.

5Michèle Giry. “A Categorical Approach to Probability Theory”. In:
Categorical Aspects of Topology and Analysis. Ed. by A. Dold, B. Eckmann,
and B. Banaschewski. Vol. 915. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1982, pp. 68–85. isbn: 978-3-540-11211-2 978-3-540-39041-1. doi:
10.1007/BFb0092872. url:
http://link.springer.com/10.1007/BFb0092872 (visited on
03/03/2017).
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Categories, Quickly

X Y

Z

f

g◦f
g

Objects Ob(C) = {X, Y, Z}
Arrows homC(X, Y) = X→ Y

Composition ◦

Arrows form a monoid under composition
W X

Y Z

f

g◦f
g h◦g

h
(h ◦ g) ◦ f = h ◦ (g ◦ f) (3)

A idA ∀A.A ∈ Ob(C) ∃ idA : homC(A,A)
(4)

Example
Set is the category of sets, where objects are sets, and arrows
are functions.
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Functors

The category of (small) categories, Cat, has morphisms called
Functors.

These can be thought of as ways to “embed” one category into
another.

FX FY

X Y

Ff

f

Functors which embed categories into themselves are called
Endofunctors.
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Monads

In the category of Endofunctors, Endo, a Monad is a triple of:

1. An Endofunctor m,
2. A natural transformation:

η : A→ m(A) (5)

This is an operation which embeds an object.
3. Another natural transformation:

µ : m2(A)→ m(A) (6)

This collapses two layers of the functor.
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The Category of Measurable Spaces

Meas is the category of measurable spaces.

The arrows (homMeas) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given
measurable spaceM, is the space of all possible measures on
it.

P(M) is itself a measurable space: measuring is integrating
over some variable a inM.
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Implementation6

In code (we restrict to measurable functions):

newtype Measure a = Measure ((a→ R)→ R)

We also get η and µ:

integrate ::Measure a→ (a→ R)→ R
integrate (Measure m) f = m f

return :: a→ Measure a
return x = Measure (λmeasure→ measure x)

(>>=) ::Measure a→ (a→ Measure b)→ Measure b
xs>>= f = Measure (λmeasure→ integrate xs

(λx→ integrate (f x)
(λy→ measure y)))

6Jared Tobin. Implementing the Giry Monad. Feb. 2017. url:
https://jtobin.io/giry-monad-implementation (visited on
06/30/2018).
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Other Applications



Differential Privacy

It has been shown7 that the semantics of the probability
monad suitable encapsulate differential privacy.

7Jason Reed and Benjamin C. Pierce. “Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy”. In: ACM Sigplan Notices. Vol. 45.
ACM, 2010, pp. 157–168. url:
http://dl.acm.org/citation.cfm?id=1863568 (visited on
03/01/2017).
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PINQ

LINQ8 is an API which provides a monadic syntax for
performing queries (sql, etc.)

PINQ9 extends this to provide differentially private queries.

8Don Box and Anders Hejlsberg. LINQ: .NET Language Integrated Query. en.
Feb. 2007. url:
https://msdn.microsoft.com/en-us/library/bb308959.aspx
(visited on 07/09/2018).
9Frank McSherry. “Privacy Integrated Queries”. In: Communications of the
ACM (Sept. 2010). url: https://www.microsoft.com/en-
us/research/publication/privacy-integrated-queries-2/.
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