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Hyperfunctions: Communicating Continuations

DONNACHA OISIN KIDNEY, Imperial College London, United Kingdom
NICOLAS WU, Imperial College London, United Kingdom

A hyperfunction is a continuation-like construction that can be used to implement communication in the
context of concurrency. Though it has been reinvented many times, it remains somewhat obscure: since its
definition by Launchbury et al. [2000], hyperfunctions have been used to implement certain algebraic effect
handlers [Kammar et al. 2013], coroutines [Spivey 2017], and breadth-first traversals [Berger et al. 2019];
however, in each of these examples, the hyperfunction type went unrecognised.

We identify the hyperfunctions hidden in all of these algorithms, and we exposit the common pattern
between them, building a framework for working with and reasoning about hyperfunctions. We use this
framework to solve a long-standing problem: giving a fully-abstract continuation-based semantics for a
concurrent calculus, the Calculus of Communicating Systems. Finally, we use hyperfunctions to build a
monadic Haskell library for efficient first-class coroutines.
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1 Introduction

While continuations and concurrency have a long and happy history together [Haynes et al. 1986;
Hieb and Dybvig 1990; Todoran 2000], occasionally the combination of these two patterns can result
in complex and intricate programs that resist comprehension. As is often the case in partnerships,
we think that the crux of the problem lies with communication: in particular, communication
between continuations. This paper is interested in hyperfunctions [Launchbury et al. 2000], a type
of continuation with a rich algebraic structure that facilitates communication.

Perhaps the best example of the problems that arise when continuations tangle with concurrency
comes from the field of program semantics. There, despite the widespread use of continuations,
it has proved difficult to find a continuation-based semantics for concurrent languages like the
Calculus of Communicating Systems (CCS) [Milner et al. 1980] and other process calculi.

Although continuation-passing style is sometimes regarded as a standard style to
use for denotational semantics, it is inadequate for describing languages that involve
non-determinism or concurrent processes. [Mosses 2010]

Though Ciobanu and Todoran have made significant progress on this problem [2018], there is
currently no fully-abstract continuation-based model for a concurrent language like CCS. However,
as we will show, hyperfunctions provide the principles to solve this long-standing problem.
Communicating continuations show up outside of program semantics, also. Coroutines, for
example, are a general control abstraction where communication plays a fundamental role; in
continuation-based implementations [Haynes et al. 1986; Shivers and Might 2006; Spivey 2017] this
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2 Donnacha Oisin Kidney and Nicolas Wu

communication becomes much more difficult to implement. A similar problem can show up even in
simple list algorithms like zip or interleave: when lists are represented with continuations [e.g. Gill
et al. 1993] the merging of two lists becomes communication between parallel processes [Launch-
bury et al. 2000]. Perhaps surprisingly, hyperfunctions encapsulate a pattern common to all of these
problems, and they provide a formalism for building algorithms to solve them.

On our way to proving full abstraction for CCS, we will take a tour through the literature,
spotting unrecognised hyperfunctions in the wild; from Hofmann’s algorithm for breadth-first
traversal in 1993, through Shivers and Might’s transducers in 2006 and Kammar et al.’s handlers of
algebraic effects in 2013, up to Spivey’s coroutine pipelines in 2017. Along the way, we will build a
toolbox for working with hyperfunctions, and a framework for reasoning about them. All of this
will equip us to define our eventual model for CCS. Finally, we will look at some novel uses for
hyperfunctions in real, practical applications: first in optimising some Haskell libraries, and finally
in building a monadic library for first-class asymmetric coroutines backed by continuations.

Contributions

e We identify and catalogue a number of appearances of hyperfunctions in the literature,
including Hofmann [1993]; Kammar et al. [2013]; Shivers and Might [2006]; Spivey [2017].
To the best of our knowledge, this is the first work to connect these appearances to the
hyperfunction definition of Launchbury et al. [2000].

e We describe how hyperfunctions behave through a handful of examples of using hyper-
functions to solve simple programming problems (Section 2).

e We characterise the expressive power of hyperfunctions, by showing that they can form a
fully-abstract model (which we call the Communicator model) for the Calculus of Commu-
nicating Systems (Section 3), thereby showing that hyperfunctions are capable of expressing
at least the model of concurrency captured by CCS.

e We use hyperfunctions to implement monadic concurrency constructions, including LogicT
for backtracking [Kiselyov et al. 2005] and Claessen’s concurrency monad [1999] (Section 4).

e Finally, we demonstrate that hyperfunctions underlie certain optimisations to coroutine
libraries [Gonzalez 2012; Spivey 2017], and we use this understanding to implement a new
Haskell library for asymmetric coroutines which allows for first-class transfer of control,
and solve the stable marriage problem using this library (Section 5).

One common feature among the works that have rediscovered hyperfunctions is that the authors
often comment on how difficult it was to figure out the hyperfunction-like structure they needed.
So, while the scientific and technical contribution of this paper is in its study of hyperfunctions
and in the development of a new model for CCS, we hope that the broader impact will be in saving
future programmers from having to reinvent this tricky type on their own.

2 Basic Hyperfunctions

Let’s start by actually defining the hyperfunction type itself. A hyperfunction of type a 3~ b is an
infinitely left-nested function of the following form:

at+b=((...—ma) >b)—>a) —b

Cardinality restrictions prevent this type from having a set-theoretic interpretation. It does have a
domain-theoretic interpretation, however (as the solution to X = (X = A) = B), as explained by
Krsti¢ et al., who also show how to interpret hyperfunctions as final coalgebras [2001a; 2001b].
For now, though, we won’t concern ourselves with the details of the foundational setting of
the hyperfunction type (although we will return to the question in Remark 3.8). Happily, most
programming languages do not impose strict cardinality restrictions on type definitions: as a result,
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Hyperfunctions: Communicating Continuations 3

hyperfunctions can be defined as a simple (but strange) recursive type. In Haskell:
newtype a & b= Hyp {1:: (b3 a) — b} (1)

In isolation, this definition can be a little perplexing: however, it is possible to build an understanding
of this type by using it to implement concrete algorithms. Over the next few pages we will do just
that, using hyperfunctions to implement functions on church-encoded numbers, zip on lists, and
breadth-first traversal. Each of these examples will reveal some capability of the type; by the end of
this section we will have enough tools to attack the problem of modelling CCS.

Code. This paper uses code examples in Haskell throughout. We do not, however, use any special
features unique to the language; the algorithms we present can be translated to any general-
purpose language with higher-order functions. One caveat for strict-by-default languages is that
the hyperfunction type must be encoded as a lazy function (a & b == (() = b & a) — b).

In addition to the Haskell code, we have also mechanised the proofs in Section 3 using Agda [Norell
2009]. This mechanisation is explained in more detail in Remark 3.17.

A brief note on syntax: we will use copatterns [Abel et al. 2013] to define hyperfunctions. A
copattern is a way to define an instance of a record type by defining each of its fields, instead of
using a constructor. The following two code snippets define the constant hyperfunction k, where
k x is a hyperfunction that always returns x.

k:b— (a3 b) ki:b— (a3 b)
kx=Hyp{i=1_— x} 1(kx) _=x

The snippet on the left uses Haskell’s record syntax, the version on the right uses copatterns.

2.1 Church Encoding

As we will see shortly, hyperfunctions tend to show up to solve problems that arise when working
with Church encodings. Church encoding is a way to encode inductive data types using only
functions; it is occasionally used for optimisation. Let’s quickly refresh our memory on Church
encoding, starting with the natural numbers, here encoded in the standard (unary) inductive way.

dataN=Z|SN
The fundamental function for processing this type is its fold:

fold:N— (a—a) > a—a
fold (Sn) s z=s (fold n s z) foldnsz = (so---o0s)z
foldZ _z=z n
For some n : N, fold n s z applies the function s to z n times. For instance, fold 3 s z = s (s (s 2)).
The Church encoding of the naturals (given below as the type N, which also has a constructor
named N) is effectively the partial application of this fold function.

newtype N = church:N —» N
N {nat:=Va(a— a) > a— a} church n =N (fold n)

Often Church encoding is used as an optimisation technique. Church-encoded lists, for instance,
underpin GHC’s list fusion machinery [Gill et al. 1993; Harper 2011; Hinze et al. 2011]. Here is an
example of how Church encoding can improve the performance of addition on N and N:

Z +m=m n+m=
Sn+m=S(n+m) N (As z — nat n's (nat m s z))

Because addition on N always destructs and then reconstructs the left-hand argument, left-nested
sums (((...+ x) + y) + z) will evaluate in quadratic time. On N, in contrast, + is always linear,
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4 Donnacha Oisin Kidney and Nicolas Wu

regardless of whether it’s left- or right-nested. This removal of intermediate data structures—
deforestation—is one of the chief benefits of church encodings; foldr, map, and + on lists can benefit
in much the same way that addition benefited above.

However, not every function adapts easily to a Church encoded variant. The predecessor function
(pred), for instance, is infamously tricky to write, and asymptotically slow: pred on N is O(n). It
seems to suffer from the problem that Church encoding solved on addition: it has to traverse all of
its input and then rebuild it to produce a result.

This pattern of performance suggests that there is some class of functions that work well on
Church encodings: addition, +, and foldr; and there is another class that does not benefit from
Church encoding: pred, tail, etc. We are interested in a third class of functions which we will
call lateral functions. Lateral functions are things like subtraction, comparison, and zipping; they
process multiple structures in parallel, and they seem like they should be pathological cases for
Church encoding (subtraction, after all, is just iterative application of pred). There is a technique
to implement these functions efficiently, however, and it uses hyperfunctions as the core unit of
computation. Over the rest of this section, we will explore this technique, and we will build a
language of hyperfunctions that will enable the more complex examples in the rest of the paper.

2.2 Lateral Church Encoding
A simple example of a lateral function is <. On N it has the following implementation:

(<) =N — N — Bool Sn<Sm=n<m Z < m=True

Sn<Z False

The recursive call takes the subterm of both of the inputs. This is what makes Church encoding the
function difficult: while we can fold over one of the arguments, as is shown below, it is difficult to
see how we might fold over both.

n< m=fold nnsnzm ns:: (N — Bool) » N — Bool nz: N — Bool
where nsnk (Sm)=nkm nz m = True
ns nk Z = False

Notice that we can derive definitions like the above mechanically: the S case is replaced by the ns
function, and the Z case by nz.
We can try to proceed by applying the same transformation to the ns function:

ns nk = fold m ms mz nk ms mk nk = nk mk
where mz  nk = False

But the ms case doesn’t work. We can’t apply nk mk, because nk expects an N, not the fold structure
built by ms. We need to rewrite the fold on n to receive a fold on m.

n < m= fold n ns nz (fold m ms mz) ns nk mk = mk nk ms mk nk = nk mk
where nz  mk=True mz nk = False

The insight here is that we treat each fold as a coroutine. The fold on n checks if its input is Z,

returning True if so (the nz function), otherwise it transfers control to the fold on m, named mk.
Ignoring types for a moment, this function does compute. But, of course, this is Haskell: we can’t

ignore the types. Plug the above function into GHC and you will receive the following complaint:

Could not construct infinite type t ~ (t -> Bool) -> Bool

This is a similar error to the one you will encounter if you try to write the Y-combinator in Haskell
(without newtypes). While the function is correct in an untyped world, Haskell’s type system
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Hyperfunctions: Communicating Continuations 5

cannot unify the types t and (t -> Bool) -> Bool. But while GHC can’t construct a type that
satisfies that equation, we can. It is, in fact, a hyperfunction: t above is inhabited by Bool 3+ Bool.

n< m=1 (nat n ns nz) 1 (ns nk) mk =1 mk nk t (ms mk) nk =1 nk mk
(nat m ms mz) where 1 nz mk = True L mz nk = False

This implementation follows the recursion pattern of the direct-style < exactly: as a result, we
know that it has the same asymptotic performance. This is a well-typed, linear implementation of
< on Church-encoded naturals, using hyperfunctions.

2.3 Hyperfunctions as Streams

In this example we will implement another lateral function: subtraction. We will also introduce
another concept here that can aid in reasoning about hyperfunctions: the stream model [Launchbury
et al. 2013]. While hyperfunctions themselves are just functions of a particular form, it can be
difficult to build a mental model for how they behave, especially when they are deeply nested and
intricately combined. However, it is possible to visualise hyperfunctions as streams, which we have
found to be much easier to reason about.

The stream model treats a hyperfunction of type a 3 b as a stream of functions of type a — b.

data Stream a = a < Stream a (a %> b) = Stream (a — b)

Think of the original hyperfunction type (Eq.(1)) as the low-level implementation, and the stream
version above as a high-level mental model. Note that this model is an approximation, not a one-to-
one representation. Many hyperfunctions are not streams, and so there are many situations when
the correspondence between the two representations breaks down.

However, when we confine ourselves to using only the interface below (Egs. (2) to (4)), the
behaviour of the two representations is indistinguishable. In particular, all equalities on the stream
model will hold on the hyperfunction model as well. In this way, we can write code with the stream
model in mind, and have it “compile” to the continuation model of Eq.(1).

The interface in question consists of three combinators: <, which pushes a function onto a stream;
©, which zips two streams together; and run, which collapses a stream into a single value (these
combinators were present in Launchbury et al.’s original work on hyperfunctions [2000]).

(«) = (a—> b) > (as b) (©) = (b ¢c) > (avb) run:a a—a

— (a% b) —(a%c) (2)

The < function is the stream constructor, so the expression f <g<h<... constructs a stream with f
at the head, followed by ¢, then h, and so on. The semantics of © (zipping) and run are as follows:

(fafs)0(g<gs)=(fog)<(fsOgs) (3) run (f < fs) = f (run fs) 4)

With this small toolbox of functions, we can build algorithms and prove things about them. For
instance, rep lifts a function a — b into a hyperfunction a 3» b. Using Eqs.(3) and (4) we can show
that rep is homomorphic through o and ©.

repfOrepg

=(farepf)o(garepg) {Eq()}

=(fog)<(repforepg) {Eq(3)}
=rep(fog)

Let’s now look at subtraction. To implement n — m, our strategy will be to convert both n and
m to hyperfunctions, zip them together using ©, and then run the result to get the answer. Our

rep:(a—b) >ad b

rep ab = ab<rep ab ®)
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6 Donnacha Oisin Kidney and Nicolas Wu

n—m=N Asz— run (nat n (id <) (rep (const z)) © nat m (id <) (rep s))

n

{natn,m}=NAsz— run ((id <---< id < id < id <const z <---)

O(id<-aidas a5 4545 <))
N
m n

{Apply©}=NAsz—run(idoid «---< idoid «idos «---<idos<constzos <---)

m n—m
n
{Applyallo} =N Asz—run(id <---< id<s <---<a s<aconst z<--)
m n—m

n
{Apply run} =N Asz— id (...(id (s (... (s (const z (...)))))))
T m n-m
{Apply id, const} = N Asz— s(...(s 2))
n=—m

Fig. 1. Derivation of Subtraction

implementation returns 0 when n < m, but we assume that m < n for the rest of this explanation
for simplicity’s sake. The implementation is given below, and diagrammed in Fig.1.

n—m=N (As z — run (nat n (id<) (rep (const z)) © nat m (id<) (rep s)))

n is converted into a stream of functions that starts with n ids, followed by infinitely many const zs,
and m is converted to a stream starting with m ids, followed by infinitely many ss.

When zipped together, the resulting stream starts by drawing the ids from both n and m’s streams.
Then, at the mth entry in the stream, the ids from m run out, and the stream switches to id o s. At
the nth entry in the stream, the ids from n run out, and the stream switches to const z o s.

Our stream is now m ids, followed by n—m: ss, followed by infinitely many const zs. When we run
the stream, we discard the ids and anything after the first const z (since const z (const z ...) = z),
leaving behind n — m applications of ss applied to z. Subtraction is done!

Let’s now leave the stream model, and return to the continuation-based model from Eq.(1). We
swap out the implementations of <, ®, and run for the following:

(@) (a—>b) > (©):(b% ) - run:a% a—a
(a3 b) > (ax= D) (6) (a3 b) > (a0 (7) run h =1 h (Hyp run)
t(f<h)k=f(kh 1(fog) h=1f(goh) ®)

As promised, the implementation of subtraction above still works, with all equalities preserved.
One final point to make is that for the stream model, these three combinators seem to be the

most “primitive” operations, from which other operations are derived. On the % type, however, the

primitive operation is 1. We can relate this operation to the stream model via the following identity:

1fg=run(fog) )

2.4 Message Passing

The original motivation for hyperfunctions, and perhaps their most well-known use, is in imple-
menting zip [Launchbury et al. 2000]. An important optimisation in Haskell is foldr-fusion [Gill et al.
1993], which uses a continuation-based encoding of lists to eliminate intermediate data structures in
list-processing code. Gill et al. demonstrated how to apply this optimisation to a library of standard
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Hyperfunctions: Communicating Continuations 7

list functions (map, filter, sum, etc.); however, zip proved to be more difficult. This is because, like
subtraction, zip is a lateral function, which processes two structures in parallel. Launchbury et al.
[2000] were the first to figure out how to apply foldr-fusion to zip, using hyperfunctions.

Zipping employs an additional feature of hyperfunctions that we have not yet seen: message
passing. To explain this feature, we will model hyperfunctions as processes that can communicate.

We will treat a hyperfunction a & a as a kind of process with some result domain a. In this
context, the run function runs the process, extracting the final result, and f < P prefixes a process P
with some action f :: a — a. © performs a parallel merge of processes.

Adding a parameter i to the domain of a &~ a gives a process which takes an i as input at every
step; (a, i) & a. We can curry this type to arrive at a & (i — a), which we call a Consumer.

type Consumeria=a % (i — a) (10)
The cons function prefixes a process with an action a — a that can rely on some input i.
cons:: (i » a — a) — Consumer i a — Consumer i a
t(consfp)qi=fi(qp)
The inverse of a consumer is a producer; we derive it simply by flipping the hyperfunction arrow.

(11)

prod :: 0 — Producer 0 a — Producer o a
t(prodop)q=1qpo
Finally, a pair of a producer and consumer can be run together with 1.

type Producer oa=(0— a) & a

1 :: Producer m a — Consumer ma — a

We will use this model of hyperfunctions to implement zip with folds on lists. To zip two lists, xs
and ys, we convert xs to a producer and ys to a consumer, and run both of them together with 1.

zip:[a] = [b] — [(a])]
zip xs ys = 1 (foldr xf xb xs) (foldr yf yb ys)

The conversion of xs is simple: on an empty list (xb), we return a process which ignores its input
and returns an empty list. On a non-empty list (xf), we produce one item: the head of the list.

xf :: a — Producer a [(a, )] xb :: Producer a [(a, D) ]
— Producer a [ (a, b) ] txb _=1]
xf x xk = prod x xk

On ys, the conversion is slightly more complex. In the empty case (yb), we also just return an
empty list. However, in the non-empty case (yf), we consume one message, using the cons function.
This message is the x, sent from xf: we pair it up with the y we have, and cons it on to the output.

yf :: b — Consumer a [(a, b)] yb:: Consumer a [ (a, b) |
— Consumer a [(a, D) ] tyb_ _=1]
yf y yk = cons (Ax xys — (x, y) : xys) yk
This defines zip on lists, entirely with folds, and without any performance penalty.

The Producer and Consumer types are not just useful for implementing zip: the pattern displayed
here, of passing messages between continuations executed in lock-step, shows up repeatedly in
implementations of coroutines (where “coroutine” here refers to structures like the kind defined
in Gonzalez’s Pipes library [2012]). We will discuss this in more detail in Section 5.1, but for
now, we will note that types almost identical to the Producer and Consumer types (save for some
rearranging of parameters) appear in both Spivey’s optimised implementation of coroutines [2017],
and in Kammar et al.’s deep handlers for coroutines [2013].
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8 Donnacha Oisin Kidney and Nicolas Wu

2.5 Breadth-First Traversals

The first occurrence of a hyperfunction-like type we were able to find is in an email to the TYPES
mailing list [1993], where Hofmann uses the following type to implement breadth-first traversal.

data Rou a b = Over | Next ((Roua b — a) — b) (12)

This type differs from the hyperfunction type we have above in two ways: first, it unfolds the
recursive definition by one step, making the type regular (i.e. its parameters don’t change in the
recursive occurrence); secondly, Rou includes the Over constructor, which is used in Hofmann’s
algorithm to signify termination of the traversal.

Without the Over constructor, it becomes necessary to pass an extra parameter around to track
recursion depth. This technique can be seen clearly in Allison’s implementation [1989] of breadth-
first traversal (or Smith’s translation of those ideas to Haskell [2009]); both of these works develop
algorithms quite similar to Hofmann’s, though they don’t quite arrive at the hyperfunction type.

Notwithstanding the extra constructor, the structure of Hofmann’s algorithm shares some
elements with the implementation of zip above (Section 2.4). While we won’t present Hofmann’s
original algorithm here, we will say that it works by building a hyperfunction for each path into
the tree, and then zipping those hyperfunctions together. The hyperfunction structure handles the
separation of levels; as a result, the final algorithm resembles the level-wise algorithms in Gibbons
et al. [2022]; Jones and Gibbons [1993].

3 Modelling CCS

Though continuations are widely used in denotational semantics, they can cause meta-theoretical
problems when used to model concurrent languages. This section will describe how we solved some
of those problems in developing a hyperfunction model of the Calculus of Communicating Systems
(CCS) [Milner et al. 1980]. The existence of this model shows that hyperfunctions are powerful
enough to express the essential components of concurrency; or at least the kind of concurrency
encapsulated by CCS.

3.1 CCS

CCS is a process calculus which supports concurrency, nondeterminism, and communication
between processes. Its syntax is given in Fig.2a. A term p : P n represents a process with names
of type n. The operational semantics of CCS, given in Fig.2b, is a labelled transition system. Each
transition is labelled with an action Act n, where an action can be silent, 7, an input n or an output
n of some name n. A trace for a process p is a list of actions [ay, . . ., a,] that label a sequence of

. a; a; an . .
transitions p — p; — -+ — py. A process can have multiple possible traces.

Actions. The term a - p represents a process consisting of an action (Act) a, followed by a
process p. The process a - p can emit the action a and reduce to p, according to the AcT rule.

Nondeterminism. The & operator represents nondeterministic choice, and 0 represents the
empty or finished process. A process p @ g can proceed by stepping through the left hand
process (Sum,) or the right (Sumg). Notice that when one branch of a @ expression is chosen,
the other branch is discarded. So the processa-b -0 @ c - d - 0 has only two traces: [a, b] or
[c,d]. There is no rule related to 0, so the finished process cannot reduce.

Parallelism. The term p || q represents a parallel merge between the processes p and ¢, which
may communicate with each other. The rules STEp; and STEP; allow either side of || to step,
without discarding the other. So the process a-b-0 || ¢-0 has the traces [a, b, ], [a, ¢, b], and
[c, a, b]. Parallel processes can also communicate: if an output from one process matches an
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data Actn=r7|n|mn dataPn=Actn-Pn|0|Pn@®Pn|Pn||Pn|vn-Pn|!(Pn)
(a) CCS Syntax

i} P’ Qi) Q/ Pi) P’
———— Acr ——— Sum, ———— Sumy ——————— STER,
aP>P PoQ— P PoQ—(Q PlO—P|Q
a n n n n
Q-0 PSP Q-0 J oy 0—0Q
e ——— STEPR P SYNCjo - SYNCop
’ 4 7 / ’
PlQ—>PlQ PlIQ—=P |l Q PIOQ—=P | Q
a _, — a _,
P—P aé{nn} P|'/P—>P
2 REs TRBP
vn-P—vn-P P— P

(b) CCS Operational Semantics

Fig. 2. CCS

input to the other, both processes reduce one step and the silent action is emitted (SYNC,o
and SYNC,). So the process n - O || 1 - 0 has the traces [n, 7], [n, n], and [7].

Restriction. The term vn - p hides the name n from anything outside of the process. As per
the Res rule, a process under a vn- term can only reduce if the emitted action does not
contain n. This can be used to enforce private communication: recall that the possible traces
fromn -0 || n- 0 included [n, n]; if we instead wrap the term with vn-, then we enforce
communication, so the only valid trace is [7].

Iteration. The term ! p represents the infinitely replicated process p. The rule REP means that
the expression ! p is equivalent to p || ! p.

Our treatment of CCS is standard: we take the same syntax and operational semantics as is
in Chappe et al. [2023], which is a slight variant of the versions present in Veltri and Vezzosi [2023]
and Bruni and Montanari [2017].

3.2 CCS Algebras

A CCS algebra is a way to interpret some CCS expression into a denotational domain. Concretely,
we capture the notion of a CCS algebra with a class, CCSAlg, where a type c is a carrier for a CCS
algebra if there is an instance CCSAlg c.

class CCSAlg ¢ where
type Name c:: Type

() =Act (Namec) > c— ¢ v--z:Namec— c— ¢ (13)
0 =c (Dzec—>c—>c
®)c—>c—oc ' tc—oc

This class has one method for each of the syntactic constructors of CCS. It also includes an associated
type Name, where Name c represents the type of names that the CCS algebra on ¢ supports.
Using this class, we define [_], which interprets a syntax tree P (Name c) into ¢ [Hutton 1998].

[_] :: CCSAlg ¢ = P (Name ¢) — ¢ (14)
This [_] function maps each syntactic construction to its corresponding method in CCSAlg. Note

that this style of defining denotational semantics means they are automatically compositional.
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10 Donnacha Oisin Kidney and Nicolas Wu

Remark 3.1. There are three “interpretation”-like functions in this section: [_] above (Eq.(14)),
and [_]| (Fig.3b) and [_]T (Fig.4b) below. These functions are polymorphic in their return types,
which can be difficult to infer from context, so we will occasionally use subscripts to disambiguate.
In Eq.(14) above, for example, we might write [_] to indicate that it has type P (Name ¢) — c.

Instances of the CCSAIlg class are expected to follow the following laws.

Oep=p (p@qQ&r=pod(q®r) pOI=q®p pOP=p (15)
Ollp=p @l llr=pli(gllr) pllg=qllp (16)
vn-0=0 vn-(p®q) =vn-pdvn-q (17)
'p=pl'p (18)

Under these laws, @ forms a semilattice (a commutative idempotent monoid) with identity 0
(Eq.(15)), || forms a commutative monoid with identity 0 (Eq.(16)), v- is homomorphic on the &
monoid (Eq.(17)), and ! expands to perform replication (Eq.(18)).

Structural congruence of CCS terms, an equivalence relation on P denoted by =y, is defined as the
equivalence closure of the relation generated by the above rules (with the addition of congruence
rules). Any lawful implementation of CCSAlg therefore satisfies the property:

pxsq = [p] =ldl

All models of CCS are expected to be lawful instances of the CCSAlg class. Furthermore the
syntax of CCS, when quotiented by =, also forms a lawful instance, where [_]p = id.

We will note at this point that while these laws are sound (i.e. structurally congruent processes
are semantically equivalent) they are not complete (bisimilar processes need not be structurally
congruent). In fact, there is no finite set of laws (with this particular set of operators) that has this
completeness property: this is explained in more detail in Section 3.4.

3.3 A Hyperfunction Model of CCS

Let’s now turn back to hyperfunctions, and to the hyperfunction model of CCS. The entirety of this
model is contained in Fig.3: it consists of the carrier type (Communicator, Fig.3a), a way to interpret
this type into another model of CCS (Fig.3b), and an implementation of the CCS operations (Fig.3c).

The Communicator Type. The carrier type of our hyperfunction model is Communicator (Fig.3a).
We have taken some structure from Section 2.4: a Communicator is a process with result type r,
that passes messages of type Message n. A Message is either a query or an answer. A query is like
a prompt: by passing a query to a Communicator, we are asking “what is your top-level action?”
The Communicator then responds with an answer containing that top-level action.

Interpretation. It can be difficult to understand some of the functions in Fig.3c in isolation: their
implementations only really make sense when we keep the interpretation of a Communicator
(Fig.3b) in mind. For that reason, we’ll go over interpretation first.

In this context, interpreting a Communicator n r means evaluating that Communicator to its
result type, r, via the function [_]| :: Communicator n r — r (Fig.3b). This evaluation translates
the actions and nondeterministic operations on the Communicator to their analogous operations
on r. In this way, [_]J| is a translation between two different representations of a CCS process.

The [_]| function works by taking a Communicator p, and passing it two arguments: 1 and .
Recall that passing a query to a Communicator as its second argument prompts it to respond with
its top-level action: in this case, the Communicator p will respond by passing its top-level action to
its first argument, 1. 1 is a special Communicator that translates Messages into actions on r: when
supplied with an answer containing some action g, it emits that action by using action prefixing
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Hyperfunctions: Communicating Continuations 1

type Communicator n r [pll=:p1lq
= (Message n — r) & (Message n — r)
tlp(aa)=a-[p]l
data Message n=q | a (Act n) 11_gq =0

(a) The Communicator Type (b) Interpretation

instance (Semilattice r, Eq n) = CCSAlg (Communicator n r) where
type Name (Communicator nr) = n

t(a-p)gqq =tqp(aa) t(vn-p) q(an) =0

t(n-p)glan=1qp(ar) (19) t(vn-p)q(an) =0 (22)

t(-9)-- =0 t(vn-p)gm=1p(vn-q) m

1t0__=0 (20) pllg=@llpe(qllp) (23)

t(pegkm=1pkm®iqgkm (21) 'p=pll!p (24)
tpllgr=ep(qlln (25)

(c) The CCS Algebra on the Communicator Model

Fig. 3. The Communicator Model

on r, and then continues the interpretation of the rest of the process (1 will never be supplied a
query in the context of this section, so for the clause : 1 p g we simply terminate and return 0).

The CCSAlg Instance. While r needs to support both action prefixing and nondeterminism for
interpretation, only nondeterminism is needed for the CCSAlg instance on Communicator (Fig.3c).

THEOREM 3.2. A Communicator n r is a CCS algebra for any semilattice (r, ®, 0).

We prove this theorem by providing below instantiations for each of the methods; these proofs are
straightforward, and provided in our mechanisation. Notice that we use the same symbols (& and
0) for the semilattice on r and the semilattice on Communicator.

Actions on Communicators. The implementation of action prefixing on a Communicator is
given in Eq.(19). Recall that we define hyperfunctions with copattern syntax; in the context of
a Communicator, this means we define a Communicator by specifying what happens when it
interacts with another process and message. So, to define the process generated by prepending
the action a to a process p, we specify what happens when this process a - p is merged with the
process g and some Message m. There are three clauses:

o In the first clause, 1 (a - p) g q, the incoming message is a query, so we respond by
transferring control to g (by calling ¢ g), passing it the rest of the current process (p), and
the action being prefixed (a a).

o In the second clause, i (n - p) q (a n), the incoming message @ n matches the action being
prefixed 7, so we transfer control to g, passing it the message 7. This “emits” the silent
transition 7 on a communication match.

o Finally, if neither of those cases match, we end, returning the empty process.

As mentioned above, this makes more sense when we bear interpretation (Fig. 3b) in mind.
Consider the following example of stepping through the interpretation of a - p:
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12 Donnacha Oisin Kidney and Nicolas Wu

[a-p]l = { Apply the definition of [_]| (Fig.3b) }
t(a-p)lq { Match the first clause of Eq.(19) }
tlp(aa) { Apply the definition of 1 (Fig.3b) }

a-[pl

In this way, we can see that [_]| is a homomorphism for action prefixing. We could also step
through a communication match (although we do not include the full trace here):

[n-plln-gll=r-[pllgllen-[plin-qllen-[n-pllqll

Nondeterminism. Nondeterminism in CCS comprises the operators 0 and @. These are imple-
mented on the Communicator model in Egs.(20) and (21). Since these two operators are simple
algebraic operators, they can be lifted pointwise into a hyperfunction. The proofs of the laws are
also simple: they follow directly from the semilattice instance on r.

Restriction. Restricting a process vn-p (Eq.(22)) makes it so that the process p cannot communicate
the name n with anything outside of p. A Communicator can both send and receive messages:
to restrict a Communicator, we censor incoming and outgoing messages to kill processes which
mention the restricted name. For example, the process 1 (vn - p) g m receives the message m, and
can send messages to g, all while restricting the name n. If the incoming message contains the
restricted name (i.e. when m := a n) the whole process is equal to 0. If the incoming message does
not contain the restricted name, we continue by transferring control to the next process, g. To
censor outgoing messages, we censor the incoming messages of the recipient process (q), by calling
v recursively (vn - ).

Parallel Merge. Parallel merge is given in Eq.(23). We can use hyperfunction composition (Eq.(7)) as
a starting point for this implementation. However, while composition allows processes to interleave
and communicate, || needs to also produce all possible orderings between its two arguments. To
add this behaviour, we might first attempt something like p || ¢ = (p © q) ® (g © p), but this only
permutes the top level arguments. Instead, we need to replace o with a kind of composition which
continues reordering recursively: here we rely on a helper function, || (Eq.(25)). This performs one
layer of composition before calling back to || to permute all later arguments.

Remark 3.3. Later, when we prove that hyperfunctions form a model for CCS, we will use a
variant of the CCS syntax which includes the || operator. A similar technique is used in Bergstra
and Klop [1984], which also adds additional operators similar in semantics to the || operator here,
or step; and sync;, later (Egs.(33) and (34)).

Replication. Replication (Eq.(24)) should have the semantics ! p = p || ! p. Unfortunately, using
that equation as a definition is not well-founded: it would not give a productive definition in our
implementation. However, we can derive another identity, ! p = p || ! p (Lemma C.5), which does
yield a productive definition.

Remark 3.4. We can combine [_]]| with [_] to interpret CCS syntax into a Communicator and
then interpret that Communicator into the underlying CCS algebra.

[LJdo[_]::CCSAlgr= P (Namer) —r

However, notice that nowhere in Fig.3 do we make use of ||, v, or ! on r. This means that the above
function rewrites a CCS process into one that uses only &, 0, and - (action prefixing). When this
conversion is semantic-preserving (proven below in Lemma 3.10), it amounts to a constructive
proof of Theorem 11.10 from Bruni and Montanari [2017].
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Hyperfunctions: Communicating Continuations 13

3.4 Proving that Communicator is a Model

We now turn to the task of proving that the model established above (Fig.3) is fully abstract.

The Plan. We will start by defining bisimilarity and full abstraction (Section 3.4.1). Then, we will
discuss why full abstraction is difficult for continuation-based models in particular, and summarise
the progress made by Ciobanu and Todoran [2017, 2018] on this problem (Remark 3.6). From
there, we will introduce the Proc model [Veltri and Vezzosi 2023]: this is a standard fully-abstract
model for CCS which we can use to prove full abstraction for the Communicator via a pair of
homomorphisms between the Proc and Communicator model (Section 3.4.2). Then, we will give
our foundational model of hyperfunctions, based on the categorical model of Krsti¢ et al. [2001a],
and briefly give our argument for well-foundedness (Remark 3.8). Finally, in Sections 3.4.3 and 3.4.4,
we will briefly summarise the detailed proof (present in full in Appendix C), and we will end with a
short discussion of formalisation (Remark 3.17).

3.4.1 Bisimilarity and Full Abstraction. Equivalence between CCS processes is captured by (strong)
bisimilarity, denoted by ~. Other notions of equivalence, like trace equivalence or weak bisimilarity
(a version of bisimilarity where emitted rs are ignored), fail to capture important aspects of CCS’s
semantics: Bruni and Montanari give a good summary of the problems [2017].

A model of CCS is an algebra that respects this bisimilarity. A fully abstract model is a model
where equality in the denotational domain corresponds precisely to bisimilarity of CCS processes.

Definition 3.5 (Full Abstraction). A model m of CCS is fully abstract when:
Vp.q-p~ g = [plm = [4]m

The structural congruence laws stated in Section 3.2 are not sufficient to prove this property, nor
even a weakening like p ~ ¢ = [p] = [g]. In fact, there is no finite set of laws that is sufficient. To
be precise, there is no finite axiomatisation of CCS that corresponds to the bisimulation equivalence
derived from the operational semantics in Fig.2b [Moller 1990a,b]. Our proof will have to take a
different route.

Remark 3.6 (Why Full Abstraction is Difficult for Continuation Models). Continuation-based models
tend to be large, where the denotational domain contains more values than there are denotations
of the source language. So, for some language with terms of type 77, and an interpretation into a
denotational domain of type D, if the domain is large then there are values v of type D for which
there are no terms that interpret to those values (3(v : D).3(t: 7).[t] = v).

This alone isn’t a showstopper: while a large domain can’t be isomorphic to the denotations, full
abstraction is a little weaker than isomorphism. Notice that the definition of full abstraction above
(Definition 3.5) only refers to values from the denotational domain that are generated from the
syntax of CCS: the fact that there might be extra “junk” in the denotational domain doesn’t matter.

For continuation-based models like the Communicator, however, this “junk” causes other prob-
lems. To understand why, consider the type of Communicators that are generated from syntax
trees. This is a subset of the Communicator type; Ciobanu and Todoran [2017] call their version of
this type the “denotable” continuations. While at first glance it might seem viable to work with this
subset type alone, remember that a Communicator is a function which takes another Communicator
as an argument.

Communicator n r = Communicator n r — Messagen — r

So any property we prove about the denotable Communicators will not necessarily apply to the
Communicator passed recursively. This breaks all but the simplest proofs that rely on (co)recursion.
We could amend the definition of Communicator to only accept denotable Communicators, but
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14 Donnacha Oisin Kidney and Nicolas Wu

that turns a simple subset type into something much more restricted and complex altogether.
Furthermore, the T Communicator (Fig.3b) is decidedly not denotable, so we would have lost our
ability to interpret a Communicator with this change.

Ciobanu and Todoran identified this problem, and defined weak abstraction to better capture a
notion of correctness that applies to continuation-based models [2017]. Weak abstraction takes
into account the idea of “denotable” continuations: informally, a proof of weak abstraction is very
similar to one of full abstraction, but the former proof only considers denotable continuations.
Weak abstraction still gives strong correctness guarantees, and it may well be the case that some
useful continuation models can only ever be weakly abstract; Ciobanu and Todoran’s model of CCS
[2018] may be one such model.

Our proof of full abstraction does not contain any particularly clever trick or conceptual leap to
sidestep this problem of denotable continuations. Instead, some proofs apply to Communicators
generally, and others apply only to those Communicators that are denotations. It is only by the
careful design of the inductive hypotheses of Lemmas 3.15 and 3.16 that these restrictions line up
with available premises in the right places, yielding our eventual proof.

3.4.2 The Proc Model. As mentioned in Section 3.4.1, we cannot prove full abstraction via the laws
of the CCS algebra alone. We will instead prove full abstraction by relating the Communicator to
another fully-abstract model: the Proc model (Fig.4). The denotational domain for this model is
given as the Haskell type in Fig.4a. CCS processes are represented by forests of coinductive rose
trees, with internal nodes labelled by Acts: for example, the processa-b -0 || a - O is represented
by the tree in Fig.4c.

While this is a standard model for CCS, our specific iteration is based on the presentation in Veltri
and Vezzosi [2023], with some notable differences. Firstly, our type is not indexed by the number of
free names (Veltri and Vezzosi’s Proc has kind N — Type). Secondly, our type contains no special
constructions to handle the coinduction in Proc: these constructions are needed in Agda, where
inductive and coinductive types are distinguished; Haskell is less precise in this area, allowing us
to write coinductive types without ceremony.

Finally, our Proc type is built out of nested lists, where Veltri and Vezzosi’s Proc type is built out
of nested “countable powersets”. As it happens, the full generality of the countable powerset type is
not needed: Proc implemented with finite sets is also a fully abstract model of CCS. Unfortunately,
current Haskell does not have quotients (although projects like Hewer and Hutton [2024] are
beginning to remedy this), so even finite sets are unavailable to us. The usual trick in this situation
is to mimic quotients, by pretending that the desired equalities hold, and by carefully implementing
only functions which respect those desired equalities. The additional equalities on Proc are given
in Fig. 4d; when they hold, they imply the validity of identities like the following:

Proc [ (a, Proc []), (b,Proc [])] = Proc [ (b,Proc []), (a,Proc [])]
Proc [(a, Proc []), (a, Proc [])] = Proc [(a, Proc [])]

The CCS Algebra on Proc. The implementation of the CCS algebra on Proc is given in Fig.4e. It
implements the following methods:

Action prefixing, Eq.(26). a - p creates a new tree with root a, and a single child p.

Nondeterminism, Eqs.(27) and (28). & concatenates the root levels of trees; 0 is repre-
sented by the empty tree.

Restriction, Eq.(29). vn - p recursively traverses p, deleting any branches with n at the root.
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newtype Proc n [Proc [1]T =0
= Proc {root :: [ (Act n, Proc n)]} [Proc ((a, p): )T = a- [p]T & [Proc q]
(a) The Proc Type (b) Interpretation
r—b
Proc [ (z, Proc [ (b,Proc [])]) b _
T, _ , (a,Proc [(b,Proc [(a Proc [])]) _ _~b—a
(a0l @ Oleroc = (@ Proc [(5Proc [DDT) ~ S 4~z
, (@, Proc [(a Proc [(b,Proc [[)D])] N
a—a—2»>
(c) The Proc Representation of a CCS process
Vp, q. Proc (p + q) = Proc (q +p) Vp. Proc (p #+ p) = Proc p
(d) Quotients on Proc
instance Eq n = CCSAlg (Proc n) where pllg=sync, pq® step; pq (32)
type Name (Proc n) = n
step; p q =
a-p="Proc[(ap)] (26) Proc [ (a.p/ || 9) (33)
0="Proc [] (27) | (a.p) « root p]
p @ q = Proc (root p + root q) (28) synci, pq=
, Proc [ (z.p' Il ¢)
vn-p="Proc [ (avn-p’) | (a,p') — root p (34)
| (ap') < rootp (29 b ;
,a%na#n] ’(’_q)(_moq
, A= b]
pllg=@ILde(qllp (30)
Lp=step; (p®sync,, pp) (1 p) (31)
(e) The CCSAlg Instance (f) Helper Functions

Fig. 4. The Proc Model

Parallel Merge, Eq.(30). || is the most complicated method. Similarly to || on the Communi-
cator, this method is implemented as nondeterministic choice between two applications of
the left-biased parallel merge, || (Eq.(32)). When we expand out the definition of ||, we see
that || has the implementation p || g = step; p q® synci, p q® step; q p ® synci, q p: in other
words, it is a nondeterministic choice between all four possible operational rules (Fig.2b)
that apply to ||. The two helper functions step; (Eq.(33)) and sync;, (Eq.(34)) correspond to
the rules STEPL, and SYNCy,. step; allows the left-hand-side argument to perform one action,
and then merges the subsequent processes (step; (a-p) g =a- (p || q))- synci, p q pulls
an input from p, and a corresponding output from ¢, and merges the rest of the processes
(syncip (a-p) (a-q) =7-(p || q9)- These two rules are grouped together in the function
L. The other two rules—STEP, and SYNC,,—are just symmetric variants of the first two, so
they can be applied by flipping the arguments to ||.
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Replication, Eq.(31). We cannot use the identity Eq.(18) as a definition, because it is not
productive. The implementation given here, however, is productive, and is also bisimilar to
Eq.(18). This definition exploits the idempotency of @ to define an equivalent expression
that does not diverge.

These methods are all adapted from their implementations in Veltri and Vezzosi [2023]. The only
real change is our definition of ||, where Veltri and Vezzosi’s implementation is:

pll g=step; p q& step, p q® synch p q

step, is a variant of step; with the arguments reversed, and synch is a commutative variant of sync,,
where synch p q = synci, p q® sync;, q p. Some rearranging shows that the difference is superficial.

All laws given by our structural congruence are proven in Veltri and Vezzosi [2023], with the
exception of the idempotency of @, though that law is implied by the operational semantics, and so
is proven indirectly. Also proven in Veltri and Vezzosi [2023] is the following:

THEOREM 3.7 (PROC IS FULLY ABSTRACT). Vp,q. p ~ ¢ < [p]rroc = [q]Proc
We will use this to prove full abstraction for the Communicator.

Remark 3.8 (Foundations and Well-Foundedness). For cardinality reasons, the hyperfunction type
does not have a set-theoretic interpretation (there is no set that corresponds to the type a & b).
Hyperfunctions follow a standard domain-theoretic [Abramsky and Jung 1995] interpretation,
however, as described by Krsti¢ et al. [2001b]. The base category here is some (cartesian closed)
category of pointed domains, closed under bilimits. Under this interpretation, hyperfunctions of
type A & B are the canonical solution of the equation X = (X = A) = B. This interpretation
characterises the recursively-defined hyperfunctions and hyperfunction operations of Launchbury
et al. [2000]. Krsti¢ et al. also gave an account of hyperfunctions as final coalgebras [2001a], and
showed that the recursive definitions correspond to this coalgebraic interpretation.

Our proofs go through without issue in this setting; because our proofs proceed by induction on
the syntax of CCS, we do not need to use the more sophisticated tools of “hyperfunction induction”
from Krstic¢ et al. [2001b]; function extensionality is sufficient.

However, because CCS processes can be infinite, we do need to address the issue of corecur-
sion and well-foundedness in our proofs. We don’t necessarily need to consider corecursion on
hyperfunctions directly: to prove equality of Communicators, we need only prove the equality
of the underlying CCS processes that they produce. In fact, we can simplify further; instead of
referring to CCS processes in general, we can specialise to the Proc model. Because the Proc model
is fully-abstract, we can perform this specialisation without loss of generality. This means that all
proofs of equality in this section eventually resolve to proofs of equality on Proc objects.

The well-foundedness of our proofs, then, corresponds to the well-foundedness of proofs of
equality on coinductive Proc trees. This notion is well-defined: indeed, Veltri and Vezzosi’s formali-
sation of Proc contains a detailed exploration in the context of guarded cubical Agda and Ticked
Cubical Type Theory [Mogelberg and Veltri 2019]. We have not formalised our well-foundedness
argument (see Remark 3.17 for a discussion); instead this argument will be made in prose, and will
be based on syntactic guarded coinduction [Coquand 1994].

In this section, a CCS process is guarded if it is syntactically “under” some action. For example,
in the expression (a - p) @ g, the process p is guarded (“p is guarded by a”), whereas the process
q is unguarded. Corecursive calls are permitted only if they are guarded; so the infinite process
p = a- p, which consists of a stream of as, is well-founded, whereas the definition p := p @ p is not.

This notion of guardedness extends to proofs of equality: if a proof relies on some coinductive
call, that call must be guarded under an action. So, to prove the equality of two processes a - p

, Vol. 1, No. 1, Article . Publication date: November 2025.



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Hyperfunctions: Communicating Continuations 17

and b - g, the proof must prove equality of a and b inductively, but once those are proven some
coinductive call is permitted to prove the equality of p and gq.

All of the proofs and definitions in this section are well-founded according to this guardedness
condition. In particular, the proofs of full abstraction all proceed via induction on the syntax of
CCS: all recursive calls either reduce the size of one argument (i.e. they are “terminating” in the
normal/inductive sense), or the recursive call is guarded under an action. As might be expected, we
only need to employ this guardedness argument when the CCS process is infinite, i.e. it includes
the ! operator. Without that operator, our proofs are well-founded by induction on syntax.

3.4.3 Relating Communicator to Proc. Our strategy is to rely on the fact that Proc is fully abstract,
and prove full abstraction for the Communicator model via a relation between Communicator and
Proc. Let’s now define precisely what that relation is.

We have already seen a way to convert a Communicator to any CCSAlg, including Proc: the [_]|
function (Fig.3b). To go the other direction we use [_]T (Fig.4b). A Proc represents a CCS process
as nested sums-of-acts, so to convert that structure into another CCS algebra we just apply @ and -
in the right places.

If, at this point, we could show that these functions form the two halves of an isomorphism, we
would have our proof of full abstraction. And, indeed, [_]| is a retraction of [_]T:

LEMMA 3.9. V(p : Proc n) [[[[p]]TCommunicator n (Proc n)]]lProc n= p

However the inverse is not true in general ([_]{ o [_]| # id). As described in Remark 3.6, we do
not have an isomorphism; but we do not need a full isomorphism for full abstraction. Instead, the
following two lemmas are sufficient to prove full abstraction for the Communicator model:

LEMMA 3.10. V(P : Pn) H[LPHCommunicator]]l = [[PﬂProc
LEmMMA 3.11. V(P : Pl’l) [[[[pﬂproc]n = [[P]]Communicator

The first of these, Lemma 3.10, says that, for any CCS term p, if we interpret that term into a
Communicator, and then interpret that Communicator into a Proc, that is the same as interpreting
the term p directly into a Proc. The second (Lemma 3.11) says the inverse. We can combine these
with Proc’s full abstraction to prove the following:

THEOREM 3.12 (COMMUNICATOR IS FULLY ABSTRACT).

Vp.q.p~q &= [[PHCOmmunicator = [[qﬂCommunicator

Proor. Recall first that Proc is fully abstract (Theorem 3.7; ¥p, q. p ~ ¢ <= [p]proc = [q]proc)-
To prove full abstraction for Communicator, then, we need to show:

VP, q. [[P]] Proc = [[Q]] Proc & [[p]]Communicator = [[Q]]Communicator

Here we prove the bi-implication in both directions, for all p and g:

[[PHProc = [qHProc - [[p]]COmmunicator = [[q]]COmmunicator -
H_P]]Communicator = [[qﬂCommunicator [[P]]Proc = [[Q]]Proc
[[P]]Communicator = {Lemma 3-11} [[PH Proc = {Lemma 3-10}
MP]] ProcﬂT = {Given} [[[[p]]Communicator]]i = {Given}
MqHPFOCHT = {Lemma 3.11} [[[[Q]]Communicatorﬂl = {Lemma 3.10}
[[q]]Communicator o [[q]] Proc O
O
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18 Donnacha Oisin Kidney and Nicolas Wu

Remark 3.13. Notice that the proof above refers specifically to a Communicator specialised to
Communicator n (Proc n). However, because Proc itself is fully abstract, we haven’t lost any
generality via this specialisation: a Proc can be interpreted (via [_]T, Fig.4b) into any other model
of CCS while preserving semantics.

3.4.4 Proving Lemmas 3.10 and 3.11. The main theorem of this section, Theorem 3.12, relies on
Lemmas 3.10 and 3.11. These lemmas establish that there is a relation between the Communicator
and Proc models, and this relation is homomorphic through the CCS algebra. Proving these lemmas
is where the bulk of the work of proving full abstraction for Communicator occurs.

The proofs of both lemmas follow the same pattern: we will give a brief outline of that pattern
here (full proofs are present in Appendix C). Unfortunately, it is not possible to prove either of these
lemmas by proving individual homomorphisms for each operator. While such homomorphisms do
hold for some operators:

[pll & [4ll = [p® 4]l [0]L =0

They do not hold for others, with || being the most problematic.

Recall the problem of not being able to finitely axiomatise CCS, discussed above. Though we no
longer rely on such an axiomatisation, solutions (or, rather, workarounds) to this problem from the
literature will provide insights that we can use in our own proof.

Bergstra and Klop [1984] describe the Algebra of Communicating Processes (ACP), a similar
calculus to CCS that can be finitely axiomatised. The key change in ACP that allows this axiomati-
sation is the addition of two new operators: a left-biased operator supporting the STEp, rule, and a
commutative operator that allows for communication. The original || can then be defined in terms
of these operators. Unfortunately, the Communicator type does not implement ACP; but their
decomposition of || is similar to our decomposition.

We have defined ||, on both Communicator (Eq.(25)) and Proc (Eq.(32)), and || can be defined in
terms of it. Furthermore, on Proc, the || operator is defined in terms of two even more fundamental
operators: step; (Eq.(33)) and sync;, (Eq.(34)). The || operator on Communicator can almost be
decomposed in a similar way with the following definitions:

L (step;pg)o=1p (o]l g t(synci,pq)o=1p(qll o)
However, the identity p || ¢ = synci, p q @ step; p g does not hold in general. The problem is that
we cannot distribute a @ under 1 p; however this equality does hold (definitionally) in the situation
where p := a - p’. We will use this fact to prove homomorphism for Communicator.

LemMa 3.14. Ya,p,q. a-p || g = synci, (a-p) q® step; (a-p) q

The strategy for this proof, then, is to rewrite the term p into a form where Lemma 3.14 and
similar lemmas can apply. One other thing to note about the proof is that we add the || operator to
the syntax of CCS; this allows us to easier track when a term stays the same size or gets smaller. It
also does not lose any generality: any term p can be converted to a term that contains ||.

The bulk of the work of this proof is accomplished in Lemmas 3.15 and 3.16.

LEmMMA 3.15. Vn,Ps q. [[[[Vs”(P IL q)ﬂCommunicator]]l = [[Vsn-(p IL q)]]Proc
LEmMMA 3.16. Vn, p,q. [[[[Vsn(p ”. q)HProc]]T = [[Vsn-(P ”. q)]]Communicator

Lemmas 3.15 and 3.16 are effectively special cases of Lemmas 3.10 and 3.11; they prove that [_]|
and [_]1 are homomorphisms on terms of the form vsn.(p || g). The operator v here is a variant
of v that takes a list of names rather than a single name, where

vsllp=p vs(n:ns).p =vsnsvn-p
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Hyperfunctions: Communicating Continuations 19

To use Lemma 3.15 we notice that all terms ¢ can be rewritten into this form (vsn.(p || q)),
because (by Lemma C.4), t = v[].(¢ || 0). This identity holds on both Proc and Communicator, so
we can apply it to both sides of the equation, meaning that Lemma 3.15 proves the homomorphism.

Remark 3.17 (Mechanisation). Accompanying this paper, we have provided a mechanisation of
our proofs of full abstraction. This mechanisation is encoded in Agda [Norell 2009]. It follows the
same structure as our prose proofs of Theorem 3.12, and of the proofs in Appendix C.

This mechanisation is necessarily partial, because there are aspects of the nature of hyperfunc-
tions and the Communicator model that are not expressible in current Agda (without significant
extensions to the underlying type theory which are beyond the scope of this work).

The first roadblock to full formalisation is that hyperfunctions (and specifically the Communicator
type) are not (currently) admissible in Agda. As discussed in Remark 3.8, the hyperfunction type
itself is somewhat exotic, and as such does not exist in all foundational settings (set theory, in
particular, does not support the definition of hyperfunctions). Agda’s type theory is another setting
which does not admit hyperfunctions, however the problem here is positivity. Since the hyperfunc-
tion type contains recursion to the left of a function arrow, it is not positive. The presence of such
types can allow for proofs of Curry’s paradox [1942].

There are some possible routes around the positivity restriction. For example, while the type
a % bisnot “strictly” positive, if we were able to restrict a to being contravariant, and b to covariant,
then the whole definition would become positive (albeit not strictly so). There is some evidence that
Agda could admit these positive types (with the co/contra-variant restrictions) without sacrificing
soundness [Coquand 2013; Sjoberg 2015].

Another route to admissibility comes from Berger et al.’s formalisation [2019] of Hofmann’s
breadth-first traversal [1993]. Berger et al. give several different verifications of the algorithm which
use the Rou type (Eq.(12)); we believe the techniques of embedding the Rou type could also apply
to the Communicator type.

The second assumption our mechanisation makes concerns well-foundedness. We have already
given our argument for well-foundedness in the text (Remark 3.8); unfortunately, this argument
relies on mixing notions of guardedness and continuations in ways that are currently beyond
the capabilities of Agda’s productivity checker. Certainly, the work of Veltri and Vezzosi [2020,
2023] paves the way for a future formalisation: however, adapting these techniques to work with a
continuation-based representation would require extension to Agda itself.

It is worth emphasising that our foundational setting in this work is the domain-theoretic setting
established by Krstic et al. [2001b]. This is different from the setting of our mechanisation, and as
such the mechanisation should be regarded as supplementary to the proofs in this paper. Because
the proofs can get quite intricate and dense, we think that the mechanisation gives some valuable
reassurance that all cases/parameters have been handled.

The code is rendered online at doisinkidney.com/code/hyperfunctions/README.html. Alterna-
tively, the code is available to download from doisinkidney.com/artifacts/popl-2025-hyperfunctions-
agda.tar.gz; it has been typechecked with Agda version 2.8.0, and the cubical library version 0.8.

4 Hyperfunctions and Monads

So far, we have seen hyperfunctions model various aspects of concurrency, culminating in an imple-
mentation of CCS. In this section, we will show how hyperfunctions interact with monads [Wadler
1995], and in particular how they can be used to build concurrency monads. This section will
demonstrate that hyperfunctions can serve a useful role in implementing efficient monadic library
code, especially when concurrency or concurrency-like patterns are involved.

, Vol. 1, No. 1, Article . Publication date: November 2025.


https://doisinkidney.com/code/hyperfunctions/README.html
https://doisinkidney.com/artifacts/popl-2025-hyperfunctions-agda.tar.gz
https://doisinkidney.com/artifacts/popl-2025-hyperfunctions-agda.tar.gz

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

975
976
977
978
979
980

20 Donnacha Oisin Kidney and Nicolas Wu

4.1 Adding Monads Simply

We will warm up with a simple example of combining monads and hyperfunctions. Recall the
implementation of zip using hyperfunctions (Section 2.4): there, hyperfunctions allowed us to write
zip on two Church-encoded lists without the usual O(n?) slowdown that comes from repeated
applications of tail. We can use a similar technique to efficiently implement disjunction on the
LogicT type [Kiselyov et al. 2005], a type for Prolog-style logic programming.

On LogicT, disjunction is implemented by interleaving ([1, 2, 3] <>[4,5, 6] = [1,4, 2,5, 3, 6]). On the
CPS-encoded version of LogicT, interleaving runs into the same problems as zip, because interleave
is a lateral function. However, we are armed with a toolbox of hyperfunctions and hyperfunction
combinators. As a result, implementing interleave is not difficult, following the pattern of zip:

interleave :: [a] — [a] — [a]
interleave xs ys = let xz = foldr (Ax xk — (x:) «xk) (Hyp (const [])) xs
yz = foldr (Ay yk — (y:) < yk) (Hyp (const [])) ys
in 1 xz yz
In fact, it is a little simpler than zip, since no message-passing is needed.
The LogicT type is not just a Church-encoded list, however. It is a CPS-encoded list transformer.
newtype LogicT m a = LogicT {runLogicT =:Vb.(a > mb— mb) - mb— mb}

This type is similar to a Church-encoded list, but it allows effects—drawn from m—to be interleaved
with the elements of the list. The following function, for instance, converts a list to a LogicT list,
interleaving each element with an 10 effect that prints that element to stdout.

printed :: Show a = [a] — LogicT 10 a

printed xs = LogicT (Ac n — foldr (Ax xs — do putStr (show x); ¢ x xs) n xs)

We can evaluate a LogicT with the following function:

evalLogicT :: Monad m >>> evallogicT (printed [1,2,3])
= LogicT ma— m [a] 123
evalLogicT Is = runLogicT [1,2,3]

Is (Ax — fmap (x3)) (return [])

Luckily, many of the hyperfunction combinators can be adapted to this monadic setting. For
instance, the < function (Eq.(6)) has the following monadic variant:

(¢m) :Monad m= (ma—b) > m(mad b) > (mas b)
t(famh) k=f (k=< h)

Notice that this function preserves the ordering of effects: h is executed before 1 k. This can be used
as a drop-in replacement for <, resulting in the following function:

interleaveT :: Monad m = LogicT m a — LogicT m a — LogicT ma
interleaveT xs ys = LogicT (Ac n —
do xz « runLogicT xs (Ax xk — return (¢ x <, xk)) (return (Hyp (const n)))
yz < runLogicT ys (Ay yk — return (¢ y <, yk)) (return (Hyp (const n)))
1 Xz yz)
And again, the effect order is preserved.

>>> evallogicT (interleaveT (printed [1,2]) (printed [3,4]))

1324

[1,3,2,4]
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4.2 A Monadic Language for Concurrency

We now know that hyperfunctions and monads can interface without much ceremony. Let’s next
look at using hyperfunctions to build an actual monad transformer for concurrency.
We will use Claessen’s concurrency monad [1999] for this example, given below by the type C.

type C m = Cont (Action m) newtype Cont r a = Cont {runCont :: (a > r) — r}

data Action m = Atom (m (Action m)) | Fork (Action m) (Action m) | Stop

A term C m a is a concurrent computation that draws effects from m. It is built on top of the Cont
monad, and has the following interface:

atom :: Functorm= ma—>Cma forkz:Cma— Cm()
atom m = Cont (Ak — Atom (frmap k m)) fork m = Cont (Ak — Fork (action m) (k ()))

atom lifts an atomic action into C; fork runs a process in the background.
The following simple program draws effects from the Writer monad, which allows us to log
output, via the tell :: String — Writer () function.

prog :: C (Writer String) ()
prog = do atom (tell "go!"); fork (forever (atom (tell "to"))); forever (atom (tell "fro"))

This program first lifts an action that outputs the string "go! ", then, in the background, it repeatedly
outputs "to", and then, on the main thread, it repeatedly outputs the string "fro".
We can interpret this language into the underlying effect using run:
run :: Monad m= C ma— m () round :: Monad m = [Action m] — m ()
run, ¢ = round [ action c] round [ ] = return ()
round (x : xs) = case x of
Atom a,, — ap, >= (Aa — round (xs+ [a]))
Fork a; ay — round (xs+ [ay, az])
Stop — round xs

>>> take 15 (execWriter (run prog))
"go!tofrotofroto”

round here implements round-robin scheduling. However, notice that this function follows the
pattern of foldr on lists: if we proceed by mechanically fusing away the intermediate list (similarly
to our approach in Section 2.4), we arrive at a hyperfunction-based implementation. Below, we
have packaged up that implementation into a type called Conc.

type Concr m=Cont (mr % mr) atomy, :: Monad m = ma— Concrma

atomy, a,, = Cont (Ak — id <, (k <$> ay,))
fork,, :: Conc r ma— Concr m ()

fork, m = runpConcrma— mr
Cont (Ak — runCont m (const id) o k ())  runy ¢ = run (runCont ¢ (const id))

This language has the same operations as C. It demonstrates how hyperfunctions can be a building
block for a “concurrency monad”, when used in combination with the continuation monad. This
monad is a monad transformer [Jones 1995], where atom corresponds to the lift function.

5 Coroutines

We have now seen a few small examples of how hyperfunctions might be used in a functional
programming language to implement concurrency as a monadic effect. This section will explore
a larger example: we will see that hyperfunctions underpin important optimisations in practical
coroutine libraries, and then we will see how to use hyperfunctions to build a new, powerful library
for asymmetric coroutines.
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5.1 Pipes

Coroutines are a broad concept, with many different implementations; in Haskell alone, the ma-
chines [Kmett 2025], conduit [Snoyman 2011], and Pipes [Gonzalez 2012] libraries all present
different interpretations of the abstraction. Though they differ in their details, these libraries are all
built around a central coroutine-like object, which is a kind of computation that can be paused and
resumed, and can communicate by sending and receiving data. For our purposes, we will take the
specific interface described by Gonzalez [2012] and Blazevi¢ [2011].

newtype Piperioma yield :: 0 — Pipe riom () halt : mr — Piperiomx

await :: Piperiom i merge:: Piperixm 1l — Piperxoml — Piperioma

A value of type Pipe r i 0 m a is a coroutine that takes input of type i, outputs os, performs effects
in m, has a final result type r, and intermediate result of type a. yield produces an output; await
requests an input; halt ends the computation; and merge joins two Pipes, connecting corresponding
yields and awaits.

Early implementations of this interface were written in direct style: the Pipe type was represented
by an inductive, tree-like data type (a variant of the free monad), and each function was defined by
pattern-matching on that type. However, as Spivey noted [2017], this direct-style implementation
can suffer from a slow-down when pipes are deeply nested. Unfortunately, the usual trick of
CPS-encoding everything turns out to be much more difficult to apply than it might first appear.
The problem lies with the merge function. Just like the zip function on lists, merge processes two
sequences in lock-step, and also just like zip, it becomes much more difficult to implement when
those sequences are CPS-encoded: merge is a lateral function.

Spivey’s solution (further explained by Pieters and Schrijvers [2019]) uses the following encoding
of a Pipe that is an intricate variant of the Cont monad (Section 4.2), given below.

newtype Pipe r i 0 m a = MkPipe type Result rio
((a—> Result (mr) io) — Result (mr) io) =InCont r i — OutContro—r

A Result takes two continuations before returning the final computation m r: the InCont is called
when the Pipe requests input (of type i, with await), and the OutCont when the Pipe emits some o
(with yield).

newtype InCont ri = MkInCont  {resumeln :: OQutCont r i — r}

newtype OutCont r 0 = MkOutCont {resumeQOut :: 0 — InCont r 0 — r}

It is not difficult to see that, after flipping the arguments to resumeOut, these types are structurally
identical to a specialisation of hyperfunctions.

OutCont r o InCont r i
=o0o—InContro—r =QutContri—r
~InContro—o—r =(i—>InContri—r)—r
= (OutContri—r) s o—r ~(nContri—i—r)—r
=rv(o—or) =(i->rNsr

In fact, we can see that these two constructions are actually instances of the Consumer and Producer
types (Egs.(10) and (11)), where

OutCont r o ~ Consumer o r InCont r i =~ Producer i r

Much like how these types enabled us to implement message-passing in a CPS-encoded zip in Sec-
tion 2.4, they allowed Spivey to implement message-passing for CPS-encoded Pipes.
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Spivey was not the only author to independently rediscover the hyperfunction type while
working with Pipe-like abstractions. Shivers and Might’s encoding of transducers [2006] includes
the same structure (although a large portion of their work is untyped, so the hyperfunction structure
is a little more difficult to see). Furthermore, Kammar et al.’s work on handlers for algebraic effects
[2013] used the following types to implement a handler for Pipes:

data Prod s r = Prod (() » Conssr —r) data Conssr=Cons (s— Prodsr—r)

Like InCont and OutCont above, both Prod and Cons are simple rearrangements of the Producer
and Consumer types.

5.2 First-class Coroutines

The Pipe implementation above has a significant shortcoming: the only way to communicate with
a Pipe is to merge it with another Pipe. From inside a Pipe, we can yield and await to send and
receive values, but there are no corresponding functions to communicate from outside a Pipe.

send:: i — Piperioma— receive :: Piperioma —
m (Pipe rioma) m (Maybe (o, Pipe r i 0 m a))

The above putative interface would allow us to pass Pipes around as first-class values, while still
communicating with them. send passes a value a Pipe, and advances its execution to the next await.
receive “pops” a value from a Pipe. These two functions are necessary for many standard patterns
in coroutine programming: if we want to store a pool of coroutines, for instance, and receive one
value from each entry, we cannot accomplish this with merging alone.

To build the solution we will take some inspiration from Shivers and Might [2006]. One of the
coroutine implementations in their work is built on Channel, an SML type:

type a cont (* Continuations. %)
datatype (a,f) Channel = Chan of (a * (f,a) Channel) cont
Without the continuation machinery of SML we cannot translate this type directly to Haskell;
we can, however, adapt it using the Cont monad:
type Channel r @ f = Cont r (a,Channel r f &) = (((a,Channel r fa) —» r) - r)

Notice that the type on the right-hand-side above resembles the Producer hyperfunction (Eq.(11)):
it “produces” «, and the parameters to Channel swap on recursion, just like a hyperfunction. It’s
not a perfect match, but it seems like the Haskell analogue of the Channel type is the following:

type Channelrio=(o—>r) %+ (i—>r)
We can turn this type into a monad by wrapping it in a continuation:
newtype Co r i 0 m a = Co {route:: (a = Channel (mr) i 0) — Channel (mr) io}

This type has a lot in common with Pipe from the previous section, with one significant difference:
instead of using separate producer and consumer continuations, it has one continuation which
both produces and consumes. This means that every input is accompanied by an output: in terms
of the interface to this type, this means that yield and await are combined into one function that
outputs a value and waits for an input at the same time.

yield:0—> Coriomi

yield x = Co (Ak = Hyp (Ah i — 1 h (ki) x))

The statement yield x suspends execution, outputs the value x, and awaits input of some type i.
We also have the merge and halt functions from the Pipe interface, and we can also run a
coroutine to produce a result. We will not include the implementations for brevity’s sake.
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So far, so familiar. However, we have not yet implemented send. To do so, we turn back to Shivers
and Might [2006], where control operators are used to implement a function they call switch:

val switch : a * (a,f) Channel -> B * («,f) Channel
fun switch(x, Chan k) = callcc (fn k’ => throw k (x, Chan k’))

This function is analogous to send: it takes a value of type «, and a channel, sends the value to the
channel, and returns a response f along with the new channel. It does so by using callcc (call
with current continuation): callcc (fn k => e) binds k to the continuation that callcc was
called from. The throw function invokes a continuation; so switch binds the current continuation
to k', and then throws to the continuation contained in the supplied channel, with the current
continuation embedded in the new channel.

Unfortunately, Haskell doesn’t have first-class continuations. It does have the continuation
monad, however, and the MonadCont typeclass [Jones 1995], which supplies a variant of call/cc.

callCC :: MonadCont m = ((a—> mb) > ma) > ma
Using this, we can build a combinator to send values to a coroutine from outside the coroutine.
send :: MonadCont m= Coriomr — i — m (Eitherr (o,Coriomr))

The function send ¢ v send a value v : i to the coroutine ¢ : Co r i 0 m r, and returns an effectful
computation m (Either r (0,Co r i o m r)). The returned value can be Left if the coroutine
terminates (either by running out of yields, or by encountering a halt), or it is Right containing the
yielded value along with the rest of the coroutine.

The implementation of send is as follows:

send ¢ v = callCC $ Ak — Left <$> 1 (route ¢ (Ax — Hyp (A _ — return x)))
(Hyp (Ar o — k (Right (o, Co (const r))))) v

callCC supplies a continuation, k : Either r (0,Co r i 0o m r) — m _, which can be called to “return”
from the computation. Above, it is called from inside a hyperfunction, where it returns the next
value supplied to the consumer, and wraps the rest of the hyperfunction. The other branch, the halt
branch, is called when there are no more values to return. This branch is represented by return x.

Sending Without Return. Given a coroutine of type Co L i 0 m L, we know that it cannot
return or exit, because there is no value of type L to return or exit with. A variant of send makes
use of this fact to avoid the need for Either.

send’ :: MonadCont m= Co Liom L —>i—>m(o,CoLliomdl)
send’ ¢ v = either absurd id <$> send ¢ v

Execution Order. Note that the order of execution of effects is slightly unintuitive. When a
process sends to a coroutine, the coroutine executes up until the previous yield statement, and then
transfers control back to the caller. Changing the execution order, so that send executes up until
the next yield is not too difficult: the Channel type is replaced with Suspension (Suspension r i o =
Channel r 0 i — r), and the coroutine is represented by i — Co r i 0 m a rather than Cor i 0o m a.

Coroutines with References. The expression send g i returns a pair (o, g’), where g’ is the
updated generator; this is a common pattern in Haskell, often encapsulated with the state monad.
In our case, we can use references (IORef) to build a clean interface with the following function:

send’ :: (MonadCont m, MonadlO m) = IORef (i— Co Lioml) > i— mo
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5.3 Stable Marriages

To demonstrate the power of our coroutine implementation, we will now implement the stable
marriage example, following the coroutine-based implementation of Allison [1983].

The stable marriage problem [Gale and Shapley 1962] takes two groups of people—described in
the original formulation as a group of men and a group of women who wish to be married—and
generates a matching, where each member of one group is paired with a distinct member of the
other. This matching should also be stable: given that each individual has a preference ranking
for the members of the opposing group, a stable matching is one where no two individuals would
prefer to be matched with each other than with their current match.

Allison’s algorithm is an elegant encoding of a natural solution to the problem. A coroutine is
constructed for each man and each woman, and the “men” propose to the women, in order of the
men’s preference. If a man’s proposal is accepted, his coroutine is suspended. The “women” are
coroutines awaiting proposals; if a proposal is better than their current offer they jilt their current
fiancé, whose coroutine resumes and then continues to propose to his next choice.

For our encoding of the algorithm, we will have three men (Aaron, Barry, and Conor), and three
women (Annie, Betty, and Ciara). Their rankings are as follows:

mranks = assoc [ (Aaron, [ Ciara, Annie, Betty]) wranks = assoc [ (Annie, [ Barry, Conor, Aaron])
, (Barry, [Ciara, Betty, Annie]) , (Betty, [Aaron, Barry, Conor])
, (Conor, [ Ciara, Annie, Betty]) ] , (Ciara, [ Conor, Aaron, Barry])]

Our encoding of the algorithm has the following type:
stable :: Array Man [ Woman] — Array Woman [Man] — 10 [ (Woman, Man) |

It takes a pair of rankings, and outputs a list of marriages.
The first step of the algorithm is to initialise the array of engagements:

engagements « liftlO (newArray_ (minBound, maxBound) :: 10 (IOArray Woman Man))

This will store the current engagements while the algorithm runs. Note that we do not use this for
inter-process communication; all communication is done with the send” and yield functions.
Next, we construct the array of coroutines for men and women:

men <« genM (Ai — newlORef (man i)); women < genM (Ai — newlORef (woman i))

Each coroutine is stored in an array, indexed by the Man and Woman data types.
The next step is to construct a coroutine for a man:

man::Man —> () > ColL () OM L
man me () = do for_ (mranks! me) $ Awi — do
liftlO (printf "%s proposes to %s; " me wi)
accept « lift (send’ (women ! wi) me)
when accept (yield ())
return (error "Unreachable")

This function takes an index representing the man that corresponds to the coroutine. Then, it
iterates through the man’s ranks, and for each it sends a proposal to the corresponding woman
(send’ (women ! wi) me). The response to this message is a Bool saying whether or not the woman
has accepted; if she does accept, the man suspends himself (when accept (yield ())). The end of
this loop will never be reached if all preferences are strict total orders, but we cannot prove that in
Haskell, so we need to use error in the return statement so that the coroutine has return type L.
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Then, the women. A “woman” is a coroutine that takes a Man as input (a suitor), and yields
Bools as output (responses to marriage proposals).

woman :: Woman — Man — Co L Man Bool M L
woman me suitor = do
liftIO (printf "%s accepts %s\n" me suitor)
liftlO (writeArray engagements me suitor)
vield True >= loop (Asuitor — do
jiltee — [iftlO (readArray engagements me)
if elemIndex suitor (wranks! me) < elemIndex jiltee (wranks ! me)
then do [iftIO (printf "%s jilts %s for %s\n" me jiltee suitor)
liftIO (writeArray engagements me suitor)
lift (send” (men! jiltee) ())
yield True
else do liftlO (printf "%s rejects %s, stays with %s\n" me suitor jiltee)
yield False)

The first suitor is always accepted (yield True), after that the coroutine loops, comparing the new
suitor to the old, and jilting the old suitor if the new is preferable. If that does happen, the woman
will modify the engagements array, notify her jiltee (send” (men ! jiltee)), and respond True to the
marriage proposal. If the new suitor is not preferable, she will instead yield False.

Finally, to run the algorithm we initiate all of the men and collect the engagments:

forAll_ (Ai — send’ (men! i) ()); liftlO (getAssocs engagements)

The output of the algorithm is as follows:

>>> stable mranks wranks

Aaron proposes to Ciara; Ciara accepts Aaron

Barry proposes to Ciara; Ciara rejects Barry, stays with Aaron
Barry proposes to Betty; Betty accepts Barry

Conor proposes to Ciara; Ciara jilts Aaron for Conor

Aaron proposes to Annie; Annie accepts Aaron

[(Annie,Aaron), (Betty,Barry), (Ciara,Conor)]

The final result is [ (Annie, Aaron), (Betty, Barry), (Ciara, Conor) |, what a happy coincidence that
their names match too.

6 Related Work

The first research on hyperfunctions was conducted by Launchbury et al., who defined and named
the construction in a technical report [2000]. Subsequently, Krsti¢ et al. established the formal basis
for hyperfunctions, and developed the coalgebraic interpretation of the type [2001a; 2001b]. In
2013, Launchbury et al. revised and published their earlier technical report; this publication forms
the basis of the research contained in this paper.

Outside of the academic literature, Kmett’s Haskell library for hyperfunctions [2015] proved
extremely helpful for demonstrating some of the more complex patterns of hyperfunction usage. In
addition, the first occurrence of a hyperfunction-like type we were able to find was Hofmann’s
Rou type [1993], which was later studied in more depth by Berger et al. [2019].

The algorithms of Allison [1983, 1989] seem to be quite similarly structured to hyperfunction
algorithms, although they do not contain hyperfunctions themselves. In particular, the research of
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Smith [2009] on Allison’s “corecursive queues” includes a lot of recursion patterns reminiscent of
Hofmann’s breadth-first traversal [1993].

One of the contentions of this work is that hyperfunctions are already being used throughout
the functional programming world by programmers who need to combine continuations and
concurrency in certain ways. While we have documented some of these usages [Hofmann 1993;
Kammar et al. 2013; Shivers and Might 2006; Spivey 2017], we think it is likely that the pattern
is even more widespread. In particular, while most of the examples we have documented are in
Haskell, we are much less familiar with the Scheme or Lisp communities, and we think that the
prevalence of continuations in those languages would increase the likelihood of rediscoveries of
hyperfunctions.

One of the main patterns of usage of hyperfunctions is in efficiently implementing zip-like
functions (what we have called “lateral” functions) on CPS-encoded data. The difficulty of imple-
menting this pattern is precisely what Spivey identified in implementing CPS-encoded Pipes [2017].
Pieters and Schrijvers wrote a follow-up to this work [2019], with the intention of simplifying the
exposition by systematically deriving Spivey’s more efficient implementation. We think that this
paper can also help clarify Spivey’s intricate type by isolating the hard-to-understand part—the
hyperfunction—and demonstrating its use in more simple examples.

While the original motivation for the development of hyperfunctions was in allowing fold-fusion
[Gill et al. 1993] to apply to the zip function, these days stream fusion [Coutts et al. 2007] is able to
perform most of the functions of fold-fusion, and has no difficulty in fusing away zip.

Our approach to CCS is strongly influenced by Bruni and Montanari [2017]. Early drafts of our
model took inspiration (especially for the implementation of the || operator) from Bahr and Hutton
[2023] and Bergstra and Klop [1985]. The canonical model we use (Proc) comes from [Veltri and
Vezzosi 2023], whose work was also invaluable for understanding the well-founded implementation
of the CCS operations.

Our model of CCS is similar in many ways to the model of Ciobanu and Todoran [2018]. The
formal foundation for their model is in metric spaces, however, which differs from ours. While
we did not need to use their weak abstractness condition [Ciobanu and Todoran 2017] for our
Communicator model of CCS, it is possible that other process calculi (especially those which
contain sequencing operators, like ACP Bergstra and Klop [1986], which we were not able to model
using hyperfunctions) can only ever have weakly abstract continuation models.

7 Conclusion

In the early history of continuations, basic concepts were independently discovered
an extraordinary number of times. This was due less to poor communication among
computer scientists than to the rich variety of settings in which continuations were
found useful [Reynolds 1993]

Hyperfunctions, like continuations, have been rediscovered multiple times. Wherever concurrency
and continuations intersect, authors have used hyperfunctions “to open up apparently closed
doors” [Launchbury et al. 2013]. Despite their many uses, however, hyperfunctions have remained
obscure and under-studied. This paper has demonstrated that hyperfunctions are powerful and
broadly useful: we hope that our work sheds more light on hyperfunctions, facilitates their more
widespread use, and spurs further research on these curious beasts.
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A Hofmann’s Rou Type and Algorithms

Previously (Section 2.5) we did not have the space to fully explain Hofmann’s Rou type and
algorithm, so we will do so here. First, Hofmann’s original algorithm, here adapted to rose trees:

bfe,, :: Tree a — [a] data Tree a = a & [Tree a
bfe,, t = extract (br t Over)
where
br::Tree a — Rou [a] [a] — Rou [a] [a]
br (x & xs) fw = Next (Abw — x : unfold fw (bw o flip (foldr br) xs))

extract :: Monoid a = unfold :: Rou a a —
Rouaa— a (Rouaa—a) —a

extract (Next k) = k extract unfold (Next k) h=k h

extract Over  =¢ unfold Over h = h Over

It’s a little difficult to see what’s going on with this algorithm, although we can see that there are two
functions for “unwrapping” a Rou value, which each handle the Over case differently. The extract
function terminates recursion when it encounters Over, whereas the unfold function continues
with the continuation it was supplied. Unfortunately, the br function is somewhat impenetrable.
One way we can understand this implementation is by redefining it in terms of combinators
similar to those we used to implement subtraction and zip (Sections 2.3 and 2.4). The implementation
of breadth-first traversal itself will follow the levels-based “zippy” style of Jones and Gibbons [1993].

bfe, :: Tree a — [a] Iz[] ys=ys
bfe, t = concat (walk t) lzxs[]=xs
where Iz (x:xs) (y:ys) = (xH#y):lzxsys

walk :: Tree a — [[a]]
walk (x & xs) =
[x]: foldr Iz [ ] (map walk xs)

This algorithm performs a breadth-first enumeration by building a list of levels in the tree; sibling
sub-trees are combined with the Iz (“long zip”) function. Though declarative, this function is not
linear, which the Rou version can help fix.

In the Rou version, the Rou [a] [a] type plays the role of the list-of-lists. To replicate bfe,
above fully, then, we will need to implement the analogues of the functions concat, Iz, and the
list constructors cons and nil. The nil constructor is easy: it corresponds to Over. The other three
functions actually already have analogues on hyperfunctions, from Section 2.3: concat corresponds
to run, Iz to ©, and cons to <. We can adapt these from hyperfunctions to Rou as follows: run goes
to extract above, and composition/zipping and cons are defined as follows:

(¢) :Rouaa— Rouaa— Rouaa («)::(a— b) > Rouab—Rouab
Over eg=g f «h=Next (Ak — f (k h))
Next f e g = Next (Ah; —
f (Ah; — unfold g (Ahs — hy (hz @ hs))))
Finally, with all of these operators defined, we can define a version of bfe that mirrors the
structure of bfe,, but executes in linear time, using the Rou type.

bfe,:: Tree a — [a] walk :: Tree a — Rou [a] [a]
bfe, t = extract (walk t) walk (x & xs) =
where (x:) « foldr (®) Over (map walk xs)

, Vol. 1, No. 1, Article . Publication date: November 2025.



1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Donnacha Oisin Kidney and Nicolas Wu

B Pipes and Coroutines

Here we will provide the full implementation of Pipes from Sections 5.1 and 5.2.
We use the following basic hyperfunctions definitions from elsewhere in the paper:

newtype a% b=Hyp {1 (b a) - b}

type Producer oa= (0 — a) ¢ a type Consumeria=a% (i — a)

Also, both types we define here will have monad instances that follow the pattern of the Cont
monad, given below:

newtype Cont r a = Cont {runCont:: (a > r) — r}

instance Monad (Cont r) where
return x = Cont (Ak — k x)
xs >= k = Cont (Ak’ — runCont xs (Ax — runCont (k x) k’))

We also use the MonadCont typeclass [Gill 2022], which we will not include here.

B.1 Pipes

This is a reimplementation of Spivey’s continuation-based Pipes, now explicitly using the hyper-
function type.
The Pipe type itself:

newtype Pipe r i 0 m a = MkPipe type Result rio=
((a—> Result (mr) i o) — Result (mr) io) Producer i r — Consumer or — r

unPipe :: Pipe rioma — (a— Result (mr) io) — Result (mr)io
unPipe (MkPipe k) = k

This type has a Monad instance that is the same as Cont above. It also has a MonadTrans [Jones
1995] instance:

instance MonadTrans (Pipe r i 0) where
lift :Vm a.Monad m = ma — Piperioma
lift m = MkPipe (Ak pc—> m>=Am' - km' pc)
The interface:
yield :: 0 — Pipe rio

] m ()
yield o = MkPipe (Ak p ¢ — 1 ¢ (Hyp (k () p)) o)

await :: Piperiom i

await = MkPipe (Ak pc — 1 p (Hyp (Ap' x = kx p’ ¢)))

halt:mr — Piperiomx
halt x = MkPipe (A- _ _ — x)

merge:: Piperixm 1L — Piperxom 1 — Piperioma
merge ix xo = MkPipe (A_ p ¢ — unPipe xo absurd (Hyp (unPipe ix absurd p)) c)

runPipe:: Piper ) O m() > mr
runPipe xs = unPipe xs (const 1) (rep (Ak — k ())) (rep const)

Once the monad instance is implemented on this type (and the monad transformer, and the
relevant mtl classes) following Cont above, it is possible to write programs like the following:

, Vol. 1, No. 1, Article . Publication date: November 2025.



Hyperfunctions: Communicating Continuations 33

1569 lhs :: Pipe () () Int 10 L rhs :: Pipe () Int () 10 L

1570 lhs = do rhs = do

1571 liftlO (printf "entered lhs\n") liftlO (printf "entered rhs\n")
1572 yield 1 X — await

17 LiftlO (printf "yielded 1\n") liftlO (printf "received %d\n" x)
1:‘; yield 2 Y < await

L6 liftlO (printf "yielded 2\n") liftlO (printf "received %d\n" y)
1577 halt (pure ()) halt (pure ())

1578 >>> runPipe (merge lhs rhs)

1579 entered rhs

1580 entered lhs

1581 received 1

1582 yielded 1

1583 received 2

1584

1535 B.2 Coroutine

1586 This is the implementation of the coroutine from Section 5.2.
1587

588 type Channel rio=(o—r) % (i—7r) type Suspension r i 0o = Channel roi—r
1589 newtype Co r i 0 m a = Co {route:: (a — Suspension (mr) i 0) — Suspension (mr) io}
1590

1501 Again, this type is a Monad and MonadTrans. We can also implement MonadCont, because this
150»  type has the same structure as Cont.

1593 The following is the interface:

1594 merge::CorixmLl — (x> Corxoml)—>Corioma

1595 merge xs ys = Co (A_ h — route xs absurd (Hyp (AW x — route (ys x) absurd (ho h"))))
159

1597 yield::0—> Coriomi

1598 yield x = Co (Ak h — 1 h (Hyp (flip k)) x)

1599

1600 await :: MonadCont m = Coriomr — m (Eitherr (o,i > Coriomr))

1601 await ¢ = callCC $ 1k —

1602 Left <$> route ¢ (Ax _ — return x)

1603 (Hyp (Ah 0 — k (Right (0,Ai = Co (A_s — 1 h s i)))))

1604

1605 await’ :: MonadCont m= Co Liom L —>m(o,i—>CoLlLiom.l)

1606 await’ ¢ = either absurd id <$ await c

1607

1608 runCo:Coriimi—mr

1609 runCo c = route c idS id

1610 And here is an example program:

1611

1612 gen:: MonadlO m = Co L Int Int m L

1613 gen = forever $ do

1614 LliftlO (putStrLn "Entered gen")

1615 x « yield 1

1616 liftlO (putStrLn ("yielded 1, received: " 4 show x))

1617
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x « yield 2
liftIO (putStrLn ("yielded 2, received: "+ show x))
x « yield 3
liftlO (putStrLn ("yielded 3, received: "+ show x))

prog :: Co L Int Int (ContT () 10) L — ContT () 10 ()
prog gen = do

liftIO (putStrLn "Entered prog")

(x, kgen) < await’ gen

liftIO (putStrLn ("received: " + show x))

(x, kgen) < await’ (kgen 10)

liftIO (putStrLn ("sent 10, received: " # show x))

(x, ) « await’ (kgen 20)

liftIO (putStrLn ("sent 20, received: " # show x))

>>> runContT (prog gen) return
Entered prog

Entered gen

received: 1

yielded 1, received: 10

sent 10, received: 2

yielded 2, received: 20

sent 20, received: 3

B.3 Reference-Based Coroutine

The coroutine implementation we use in Section 5.3 is designed to be used with an IORef. Here are
the new implementations (where ResumeChannel is the name of the module for Co above).
await :: (MonadCont m, MonadlO m) = IORef (Corio mr) — m (Either r (0,i > m ()))
await ¢ =
liftIO (readIORef ¢) >=
fmap (fmap (fmap (fmap (liftIO o writeIORef c)))) o

ResumeChannel.await

send :: (MonadCont m, MonadlO m) = IORef (i » Coriomr) — i — m (Either r 0)
send c i = do
cval « liftlO (readIORef c)
ResumeChannel.await (cval i) >= Acase
Right (o, k) — do liftlO (writeIORef ¢ k)
return (Right o)
Left r — return (Left r)

await’ :: (MonadCont m, MonadlO m) = IORef (Co Liom 1) » m (0,i— m())
await’ = fmap (either absurd id) o await

send’ :: (MonadCont m, MonadlO m) = IORef (i > Co Lioml) > i—> mo
send’ ¢ = fmap (either absurd id) o send c
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C Proofs

In this appendix, we will provide the proof of the main theorem of the paper: Theorem 3.12. This
proof follows from two main lemmas, Lemmas 3.10 and 3.11. We will also prove Lemma 3.9.

All of these proofs can also be found in our Agda formalisation. In fact, the structure of this section
follows the structure of the Agda proofs closely, and we will make reference to the formalisation
throughout. As such, this section can be used as a guide to the formalisation.

Structure. The main theorem that we aim to prove is Theorem 3.12.

Vp’ qp~q & [[PHCOmmunicator = [[qﬂCOmmunicator

The statement of this theorem can be found in the mechanisation in the file CCS/Homomorphism. agda.
This relies on the combination of three other facts: Lemmas 3.10 and 3.11 and Theorem 3.7. This
combination is described in Section 3.4, here we will prove the first of these two lemmas. The third
component, Theorem 3.7, has already been proven by Veltri and Vezzosi [2023], so here we take it
as a given, and give it as a postulate in the mechanisation. We also specialise the variable names to
N in this proof: we need this to pick fresh variables given a finite AST.

Remark C.1 (The Proc Type). Veltri and Vezzosi [2023] have already formalised much of the Proc
type, so we do not repeat their work here. However, we do include a basic replication of their type in
our formalisation (found in the file CCS/Proc. agda). While Veltri and Vezzosi employ sophisticated
techniques to prove well-foundedness for their model of CCS, unfortunately those techniques are
not sufficient in our case when the Communicator type is involved.

In this section, and in our mechanisation, the Proc type is represented by nested finite sets. This
type has three constructors: one for the empty process (0 : Proc n), one for the singleton process
(1_S : Act n X Proc n — Proc n), and one for the union of two processes (U : Proc n — Proc n —
Proc n). The usual quotients (i.e. the laws of a commutative, idempotent monoid) apply.

In this appendix, we will first give a short proof of Lemma 3.9, and then we will describe the
structure of the proofs of Lemmas 3.10 and 3.11, before giving the proofs in more detail.

ProoF oF LEmMA 3.9. V(p : Proc n). [[P[Tcommunicator n (Proc ) proc n = P

In our formalisation, this proof is given as proc— com— proc, in CCS/Homomorphism.agda. The
proof itself proceeds by pattern-matching on p:
p = 0 Then identity here holds definitionally, since [0]T = 0,and [0], =:01 g=0.
p = la,q} This similarly applies largely definitionally, however we apply the proof recursively
to g, which is allowed since it is guarded under a.
p = qUr Again, most of this applies definitionally. We do have to call the proof recursively,
on q and r, but this does not need to be guarded because recall that the set is finite.

]

Proors or LEMmAS 3.10 AND 3.11.

V(P :P n)- [[[[P]]Communicatorﬂl = [[PﬂProc V(P : P n)- H[{PHProc]]T = [[PﬂCommunicator

Both of these proofs proceed quite similarly. Their proofs in our mechanisation can be found in the
file CCS/Homomorphism.agda; the details of Lemma 3.10 are in CCS/Homomorphism/CtoP.agda;
and the details of Lemma 3.11 are in CCS/Homomorphism/PtoC. agda. Since their structure is quite
similar, we will proceed by focusing on Lemma 3.10; Lemma 3.11 is effectively the same proof
mirrored.
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As explained in Section 3.4, we will first rewrite the CCS term in question into the common form
vs [1: (p IL 0). Then, from here we proceed by applying Lemma 3.15.

We have already explained our high-level argument for well-foundedness; specifically for this
proof, each of the sub-lemmas Lemmas 3.15, C.2 and C.3 inductively recurse on one of their
arguments. In other words, each of these proofs is guaranteed to only take finite time before
transferring the proof burden to the next lemma in the chain. The Lemmas C.2 and C.3 then may
refer back to Lemma 3.15: this call is not inductive or guaranteed to terminate, but it is guarded in
each case. O

Proor oF LEMMA 3.15. ¥n, p,q. [[vsn-(p IL @) ]communicator[4 = [vsn-(p IL ¢)]proc
This proof proceeds by induction on p. Since p is a finite, inductive term, recursion on subterms

of p does not need justification via guardedness. In our mechanisation, this proof can be found in
the file CCS/Homomorphism/CtoP.agda, with the name |-hom].

The proof proceeds by induction on p. The first few cases are simple, consisting basically of
rewriting and then recursion on subterms.

p:=q®r Bothvand || distribute over @, so we distribute and proceed recursively.

pi=qllr Werewritep || g= (p |l q9) ® (¢ || p), and then proceed with the corresponding
other cases.

p=gq |l r We apply the pseudo-associativity of ||, rewriting [[vsn.((p IL ¢) IL r)]]! to
[ven-(p IL (g Il P))]]L. and proceeding on p.

p :=1q We rewrite using ! p = p || ! p, and recurse on p.

p = 0 This holds definitionally.

The last two cases are more interesting.

p = vm - q For this identity, we first take a fresh name, which we will call f. Since f ¢ ¢
(because f is fresh), we have vf - q¢ = q. Furthermore, we can rename m to f in p, and the
identity vf - [m/f]p = vs - p holds. Finally, we also have the identity va - p || va - q =
va-(vn-p || vn- q). Combined, all of this lets us rewrite [[vsn.((vm - p) || @)]]I to
[[vs(f : n).(Im/flp IL @]]i- Then, we can proceed by recursing on [m/f]p. Though
[m/f1p is not strictly a subterm of vm - p, for the purposes of well-foundedness it suffices,
because the size of the [m/f]p is the same as p.

p =a-q Recall that (a- p) || q = synci, p q ® step; p q holds on both Communicator and
Proc; we can apply this identity and proceed on both sides of @ with Lemmas C.2 and C.3.

O

LemMmA C.2. Vn,a,p, q. [vsn. step; [a- p] [q]]l = vsn. step; [a - p] [q]

Proor. This proof can be found in our mechanisation in the file CCS/Homomorphism/CtoP . agda,
named step-hom]. There are two cases for this proof: if a is contained in the list of names n, then
both sides evaluate to 0, and the proof is done. Otherwise, the term reduces to a - [vsn. [p] || [q]]1-
From here, we can rewrite p || ¢ = (p || q) ® (q || p), distribute over &, and recurse by applying
Lemma 3.15. This recursion is allowed, since we are guarded under a. O

LemMma C.3. Vn,a,p, q. [vsn. synci, [a - p] [q]]l = vsn. synci, [a - p] [4]

Proor. This proof can be found in our mechanisation in the file CCS/Homomorphism/CtoP . agda,
named sync-hom|. Similarly to Lemma C.2, if a is present in n, then both sides evaluate to 0. Also, if
a = 7 or a := n then both sides also evaluate to 0. Finally, we pattern-match on g, following a similar
pattern of distribution and rewriting to Lemma 3.15. When q := b - r, where b is a communication
match with g, (i.e. a := n and b := n), then we emit a 7, and proceed guarded under that action
calling back to Lemma 3.15. O
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LEMMa C4. p|LO0=p

Proor. This holds on Communicator simply:
L(plIL0) gm
1p (O] g m
tpgm

On Proc:

pILO
syncio p O ® step; p 0
step;p O
p

{Lemma C.6 }

LEMMACS. Vp. Ip=p|l!p

Proor. We prove this identity on Proc

'p = {Eq(31)}
step; (p @ syncy, p p) (! p) =
step; p (! p) @ step; (sync;, p p) (! p) =
step; p (! p) @ sync;, p (step; p (! p)) =
step; p (! p) @ sync;, p (step; p (! p)) © 0 =
step; p (! p) @ sync;, p (step; p (! p)) ® sync, p (sync;, p (step; p (! p)))
step; p (! p) @ syncy, p (step; p (! p)) ® syncy, p (step, (syncy, p p) (! p))

step; p (! p) ® sync,, p (step; p (! p) & step; (sync;, pp) (! p)) = {LemmaC.7}
step; p (! p) ® sync;, p (! p) =
sync;, p (! p) @ step; p (! p) =
piL!p
O

LEmmaC6. 0|l p=p

Proor. Since 0 || p = 0 holds by definition on both Communicator and Proc, this follows from
Lemma C.4. O

LemMma C.7. Va,p,q,r. synci, (a-p) (q®r) = synci, (a-p) q® synci, (a-p) r

Proor. This again applies on Proc because bind distributes over +. O
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