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Graphs and their algorithms are fundamental to computer science, but they can be difficult to formalise,

especially in dependently-typed proof assistants. Part of the problem is that graphs aren’t as well-behaved

as inductive data types like trees or lists; another problem is that graph algorithms (at least in standard

presentations) often aren’t structurally recursive. Instead of trying to find a way to make graphs behave like

other familiar inductive types, this paper builds a formal theory of graphs and their algorithms where graphs

are treated as coinductive structures from the beginning. We formalise our theory in Agda.

This approach has its own unique challenges: Agda is more comfortable with induction than coinduction.

Additionally, our formalisation relies on quotient types, which tend to make coinduction even harder to

deal with. Nonetheless, we develop reusable techniques to deal with these difficulties, and the simple graph

representation at the heart of our work turns out to be flexible, powerful, and formalisable.

1 Introduction
Some data structures are easier to formalise than others. Generally speaking, especially in the

dependently-typed world, a formalisation effort will be more pleasant if (1) everything involved is

inductive, (2) there is nothing that needs quotienting, and (3) algorithmic efficiency is of no concern.

Graphs fail on all three counts.

There are a few ways to overcome these hurdles: in the functional programming world, huge

strides have been made by representing graphs as inductive data types [Erwig 2008; Gibbons 1995]

or with typeclasses [Mokhov 2017]. Specifically treating graphs as matrices has also proved useful,

especially in elucidating the link between semirings and search algorithms [Backhouse and Carré

1975; Conway 1971; Dolan 2013; Master 2021; Rivas et al. 2015].

We take an alternative route: our graph representation is fundamentally coinductive, based on a

generalisation of adjacency lists. In this paper, a directed weighted graph with vertices of type 𝑉 is

a function from a vertex to a weighted set of its neighbours.

GraphOf : Type→ Type

GraphOf V = V → Neighbours V

(1)

Though simple, this representation is powerful and is supported by a deep theoretical foundation.

We will leave the Neighbours type abstract for now: it represents weighted sets that are not

necessarily finite. A value graph : GraphOf V is a graph with vertices of type V : an example is

given in Fig.1. The neighbours of a, for instance, are given by:

graph a = * 7 ⊲ b , 2 ⊲ c +

This line says that a has two outward edges, a ↦→ b and a ↦→ c, with weights 7 and 2, respectively.

In this example, the weights are drawn from N, but our construction is generic over a large class of

weights, which will be characterised in Section 2.1.

The rest of this paper will be devoted to exploring this representation and examining its practical

and theoretical aspects. We start by implementing a standard graph algorithm: finding Hamiltonian

paths. A Hamiltonian path is one that visits every vertex in a graph exactly once. In this paper, graph

Authors’ Contact Information: Donnacha Oisín Kidney, Imperial College London, London, United Kingdom, o.kidney21@

imperial.ac.uk; Nicolas Wu, Imperial College London, London, United Kingdom, n.wu@imperial.ac.uk.

2024. ACM 2475-1421/2024/11-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. POPL, No. , Article . Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0003-4952-7359
HTTPS://ORCID.ORG/0000-0002-4161-985X
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#386
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#386
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#386
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#579
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#579
https://oisdk.github.io/formalising-graph-algorithms-with-coinduction/NeighboursGraphs.html#579
https://orcid.org/0000-0003-4952-7359
https://orcid.org/0000-0002-4161-985X
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Donnacha Oisín Kidney and Nicolas Wu

data Vert : Type where
a b c d : Vert

graph : GraphOf Vert

graph a = * 7 ⊲ b , 2 ⊲ c +
graph b = * 1 ⊲ c +
graph c = * 3 ⊲ d , 1 ⊲ b +
graph d = * 5 ⊲ b +
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Fig. 1. A weighted graph with four vertices and its transitive closure

algorithms will be reframed as graph transformations. Accordingly, the algorithm for computing

Hamiltonian paths for a finite type V is as follows:

hamiltonian : GraphOf V → GraphOf (List
+
V )

hamiltonian g = (pathed g >=> filtering uniq)
∗ >=> filtering covers

(2)

The expression hamiltonian g produces a graph whose vertices contain the Hamiltonian paths in g

(List
+
is the type of non-empty snoc lists). Taking the graph in Fig.1 as an example, to extract a

concrete collection of Hamiltonian paths we apply hamiltonian graph to some starting point:

hamiltonian graph [ a ] ≻ 15 ≡ * 11 ⊲ [ a , b , c , d ] , 10 ⊲ [ a , c , d , b ] +

The ≻ operator restricts the output of search to a particular depth. So the expression above says

that there are two Hamiltonian paths (in graph) with weight less than 15 that start at the vertex a:

[a, b, c, d], and [a, c, d, b], with weights 11 and 10, respectively.

Algorithms to compute Hamiltonian paths are often complex. However, our implementation is

simple, built out of small, algebraic components. For more detail on these components see Section 3.

The first component is the ∗ operator, which computes transitive closure. Fig.1 contains a diagram

of its use: graph
∗
is a graph where every vertex has an edge to every reachable vertex, with a

weight equal to the sum of the weights on the shortest path to that vertex. For instance, there is

an edge (a ↦→ d) ∈ graph∗ with weight 5, constructed from the path a ↦→ c ↦→ d (note that in our

formalisation, ∗ is not called directly on a graph, but rather on its ideal, as explained in Section 5.4).

Most of the algorithmic “work” is done by the ∗ function; the rest of the implementation is book-

keeping and filtering. The pathed function, for instance, tags every vertex with a list representing

the path taken to reach that vertex. The >=> operator connects graphs: here we use it in combination

with filtering to filter the output of the algorithm, where g >=>filtering 𝑝 basically filters the vertices

of g according to some predicate 𝑝 . We use the predicate uniq to remove paths with loops, and

covers to restrict the output to only those paths that hit every vertex in the graph.

Finding Hamiltonian paths is an NP-complete problem, and the hamiltonian function presented

here is not particularly optimised. However, there is nothing inherently slow about this graph

representation or the combinators used: the core algorithmic step of the hamiltonian function, ∗,
performs a simple breadth-first search in O(𝑛) when an efficient representation of Neighbours is

used (Section 3.4). Finally, perhaps surprisingly, this core step (∗) is fundamentally coinductive.

Let us take a moment to explain why coinduction is central to our approach. The obvious

advantage of working with a coinductive representation is that we can work with graphs that have

infinitely many vertices. For instance, finding all the Collatz sequences of length 5 or less is easy:
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collatz : GraphOf N

collatz 0 = *+
collatz (suc n) =

if suc n mod 6 ≡𝑁 4

then * 1 ⊲ 2 * suc n , 1 ⊲ n div 3 +
else * 1 ⊲ 2 * suc n +

(3)

((pathed collatz >=> filtering uniq)
∗
) [ 1 ] ≻ 5 ≡

* 0 ⊲ [ 1 ] , 1 ⊲ [ 1 , 2 ] , 2 ⊲ [ 1 , 2 , 4 ]
, 3 ⊲ [ 1 , 2 , 4 , 8 ] , 4 ⊲ [ 1 , 2 , 4 , 8 , 16 ]

, 5 ⊲ [ 1 , 2 , 4 , 8 , 16 , 32 ]

, 5 ⊲ [ 1 , 2 , 4 , 8 , 16 , 5 ] +

However, even when a graph has finitely many vertices, we would argue that traditional graph

algorithms are usually not inductive in any real sense. A standard textbook exposition of depth-first

search will not present a structurally recursive fold, but instead will describe an iterative algorithm

that repeatedly expands a search until some condition is met. And while the termination condition

might rely on the finiteness of vertices in a textbook, real-world implementations of such algorithms

often use some “cutoff” based on time or distance (“stop searching after 𝑥 seconds/steps”).

It is our view that this style of algorithm deserves to be formalised: indeed, if we ever hope to

formalise real software that works with graphs, the theory for how that software works needs to

be established. This paper is a step towards establishing that theory.

Structure of this Paper
This paper is about the semantics and implementation of graphs and graph algorithms. Our focus

is on the representation given in Eq.(1): though simple, this representation is flexible, powerful,

and amenable to formalisation. We discuss the representation in detail in Section 2.

Coinduction is central to our representation: in Section 4 we explore the formal underpinnings

of coinduction for our graph representation, and present a number of coinductive structures that

can be used to work with (possibly infinite) graphs in a well-founded way.

Finally, Section 5 addresses the issue of combining quotients and coinduction in the context of

graph algorithms. This is a well-known pain point in dependently-typed programming languages:

this section presents a few approaches, culminating in the Neighbours type, a monad that can be

used to represent well-founded coinductive graph algorithms.

Along these lines, we make the following contributions:

• We present a fully formalised representation of graphs that can handle infinite graphs and

coinductive algorithms (Section 2). This representation uses quotients to equate graphs that

differ only by, for instance, the order of their vertices.

• We present two semirings on graphs that are used to implement and structure various graph

algorithms (Sections 3.1 and 3.5).

• We prove that theWeighted type is the free weight semimodule, and use this to present an

optimisation of the algorithms implemented using semirings (Section 3.4).

• We implement a productive, coinductive version of the pairing heap, based on the cofree

comonad, and use it to implement a search algorithm (Section 4.1).

• We present an application of completely iterative monads (cims) to the problem of graph

search (Section 4.3), and formalise a new guardedness condition that allows this (Lemma 4.1).

• We present the Bush type, a quotiented version of the pairing heap (Section 5.2).

• We present the Neighbours type, a construction based on semigroup actions that is a monad,

a monoid, and a cim, and can represent coinductive graph algorithms as graph transforma-

tions (Section 5.3).

Our formalisation provided in the supplementarymaterials is in Cubical Agda [Vezzosi et al. 2021],

giving us access to univalence, quotients, and Cubical Type Theory. We use quotients extensively
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in this paper, but our only real use of univalence is in Section 3.5. Outside of Section 3.5, then, the

formalisation of this paper can be thought of as “Martin-Löf Type Theory (MLTT) with quotients”.

The formalisation of this work is available to download fromhttps://github.com/oisdk/formalising-

graph-algorithms-with-coinduction. Every code block in this paper is hyperlinked to the source of

that block online, rendered and highlighted and accessible from a browser without installing Agda.

It is also possible to browse the source code alongside the paper by following https://oisdk.github.

io/formalising-graph-algorithms-with-coinduction/README.html, which is a file organising the

source to follow the structure of this paper.

2 Representing Graphs
Let’s now look at the graph representation in a little more detail. This section will give a for-

mal account of the types involved: first, we will describe the algebra that defines weights in a

graph (Section 2.1), and then we will describe the data structure used to represent the neighbours

of a vertex (Section 2.2). This section defines the inductive variant of weighted sets, later we will

construct the coinductive variant (Sections 4 and 5).

2.1 Weights
The edges of the graph in Fig.1 are each tagged with a weight. In this case, the weight is a simple

natural number, but the framework we define in this paper actually works with a more general

construction, based on the monus operation, written as ·−, which is a notion of subtraction with

truncation [Amer 1984]. For instance on N: 5 ·− 3 = 2, and 3 ·− 5 = 0. To give its general definition,

we must establish some of the algebraic structure that should exist on weights.

First, weights are monoidal. This is essential for being able to talk about paths through a graph:

the path a ↦→ c ↦→ d has a weight equal to the sum of the constituent edges (5, in this case). The

binary operator on this monoid will be denoted with •; in the case of the natural-number weights

on the graph in Fig.1, this operator is instantiated to +. A neutral element, 𝜖 , denotes the weight of

the identity path, the path from a vertex to itself. Again on natural numbers this neutral element is

instantiated to 0. Finally, the laws of associativity and identity follow from the expected behaviour

of the paths: going from (a ↦→ b ↦→ c) ↦→ d should have the same weight as a ↦→ (b ↦→ c ↦→ d).
Secondly, weights should be ordered. The particular order we will use is the algebraic preorder :

x ⩽ y = ∃ z × (y ≡ x • z)

This says that 𝑥 is ordered before 𝑦 iff there is some weight 𝑧 that can be added to 𝑥 to get to 𝑦.

We will insist that this relation forms a total order. The relation is automatically reflexive and

transitive (these follow from the monoid laws), so this requirement amounts to the relation being

antisymmetric and connected. Antisymmetry actually rules out groups, since 𝑥 ⩽ 𝑦 for all 𝑥 and 𝑦

in the presence of additive inverses (𝑧 = 𝑥−1 •𝑦; 𝑦 = 𝑥 • 𝑧). In fact, every monus is the positive cone

of some group (the cone of a group is the monoid generated by taking the non-negative elements

of that group; (N, +, 0) is the cone of (Z, +, 0)).
In Agda, the statement “⩽ is connected” translates to the existence of the following function:

_⩽|⩾_ : ∀ x y→ (x ⩽ y) ⊎ (y ⩽ x)

From this function we can extract an implementation of the monus operator:

x ·− y = (const 𝜖 ▽ fst) (x ⩽|⩾ y)

The operator ▽ is shorthand for either ; and so 𝑥 ·−𝑦 is 𝑧 when 𝑥 = 𝑦 • 𝑧, and constantly 𝜖 otherwise.
Finally, some later proofs will rely on the commutativity of •, so we add this to the definition:
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Definition 2.1 (Monus). A monus [Amer 1984] is a commutative monoid (𝑆, •, 𝜖) such that the

algebraic preorder is antisymmetric and connected.

The monoid of addition on natural numbers is a simple example of a monus, but we also have

other positive cones of groups (Q+, etc.). Probability also forms a monus, albeit with a slightly

strange preorder. The monoid is (P,×, 1) (where the carrier set P is the interval of rationals [0, 1]),
and the order is given by 𝑥 ⩽ 𝑦 when 𝑥 ismore likely than 𝑦. Unweighted graphs are also supported

by our framework: the trivial weight, ⊤, makes weighted sets degrade to simple finite sets.

2.2 Weighted Sets
Now that we have established the algebra for weights in a graph, we will define precisely the data

structure that describes the neighbours of a vertex: the weighted set.

data Weighted A where

A value of type Weighted 𝐴 is a weighted set of 𝐴s, where the weight is given by some type 𝑆 .

Note that this is not the same type as Neighbours (which will be fully introduced in Section 5.3):

although a graph representation based onWeighted alone would allow the expression of infinite

graphs, they would be restricted to finite breadth since Weighted represents finite weighted sets.

We will define this type using quotients: the particular implementation of quotients we will use

is based on Higher-Inductive types (HITs) [Univalent Foundations Program 2013, chapter 5]. All of

these constructions are formalised in Cubical Agda [Vezzosi et al. 2021].

Higher-inductive data types are defined not just by point constructors but also by path construc-

tors. Point constructors are the “normal” data constructors for a type; they define how to construct

values (points) of the type. For the weighted set, they are as follows:

*+ : Weighted A

_⊲_::_ : (p : S) (x : A) (xs : Weighted A)→Weighted A

A weighted set is either an empty set, *+, or a pair of a weight p and value x added to a set xs.

Notice that this type has the same structure as a list of pairs of As and Ss.

The path constructors, on the other hand, specify equalities that hold on the type. For our

purposes it is sufficient to think of them as ways to quotient a type (however, HITs are more general

than just set quotients). The Weighted type has three path constructors, the first of which is:

com : ∀ p x q y xs→ p ⊲ x :: q ⊲ y :: xs ≡ q ⊲ y :: p ⊲ x :: xs

This constructor says that the order of values in a weighted set don’t matter; two sets whose

contents are permutations of each other should be regarded as equal. For instance, this constructor

says that the edges of a in Fig.1 could have been specified in any order (modulo syntactic sugar):

com 7 b 2 c *+ : * 7 ⊲ b , 2 ⊲ c + ≡ * 2 ⊲ c , 7 ⊲ b +

The next constructor specifies how to deal with key collision:

dup : ∀ p q x xs→ p ⊲ x :: q ⊲ x :: xs ≡ p ⊓ q ⊲ x :: xs

If the same key—x in this example—is present twice in a weighted set, we take the minimum of the

two corresponding weights (p ⊓ q). In the context of graphs, this means that if there is more than

one edge between two vertices, we will ignore all but the least-weight edge.

The final constructor, trunc, makes all equalities on the Weighted type equal:

trunc : ∀ xs ys (p q : xs ≡ ys)→ p ≡ q
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Table 1. The Overlay Monoid on Weighted Graphs

empty : GraphOf A

empty _ = *+
empty = a

b

c

d

_⊞_ : GraphOf A→
GraphOf A→
GraphOf A

(f ⊞ g) v = f v ∪ g v

a

b

c

d a

b

c

d a

b

c

d

3

1

⊞

2

5

4

=

2

5

1

The full technical details of what’s going on here are beyond the scope of this paper, but basically

this constructor collapses the higher homotopy structure ofWeighted, making behave like an MLTT

type, rather than like one of the more exotic types available in HoTT.

With this definition of weighted sets, an initial implementation of our graph type becomes:

GraphOf V = V →Weighted V (4)

This type differs from our GraphOf type in the introduction only by the replacement of Neighbours

with Weighted. This does not make this graph type finite, or inductive (for example, collatz

from Eq. (3) is expressible in this form). The difference is that the neighbours of a vertex may

not be expressed coinductively, which means that the definition of ∗ is not productive.

3 Algebraic Graphs
There is a natural algebraic structure on graphs that can be used as a language for expressing

compositional graph algorithms, as we did with Hamiltonian paths. This algebraic structure is a

semiring: commonly used as an abstraction in search and optimisation algorithms [Backhouse 1975;

Backhouse and Carré 1975; Backhouse et al. 1994; Conway 1971; Dolan 2013; Master 2021; Rivas

et al. 2015], here semirings will describe the ways that graphs can be combined.

Definition 3.1 (Semiring). A semiring (𝑆, ⊕, 0, ⊗, 1) is a commutative monoid, (𝑆, ⊕, 0), and a

monoid (𝑆, ⊗, 1), such that the following laws are obeyed:

(𝑥 ⊕ 𝑦) ⊗ 𝑧 = (𝑥 ⊗ 𝑧) ⊕ (𝑦 ⊗ 𝑧) 𝑥 ⊗ (𝑦 ⊕ 𝑧) = (𝑥 ⊗ 𝑦) ⊕ (𝑥 ⊗ 𝑧) 0 ⊗ 𝑥 = 𝑥 ⊗ 0 = 0

The booleans form a semiring in a straightforward way (Bool,∨, false,∧, true), as do the naturals
(N, +, 0,×, 1). Regular languages also form a semiring, and entire nondeterministic programs can

be semirings, under disjunction and conjunction (which underlies many of the programs in Dolan

[2013]). The graph semirings that we will look at also behave like conjunction and disjunction.

The edge semiring (Section 3.1) describes the combination of the edges of a graph; we will use

it to implement algorithms including transitive closure (Section 3.2)—recall that we used this to

find Hamiltonian paths (Section 1). Then, we will look at optimising the representation of the

graph (Section 3.4). By implementing algorithms using only the semiring abstraction, we can

optimise aggressively without changing the semantics of the algorithms. Finally, we will look at

the vertex semiring (Section 3.5), which structures the combination of vertices in a graph.
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Table 2. The Connection Monoid on Weighted Graphs

return : GraphOf A

return = a

b

c

d

0

0

0

0

_>=> _ : GraphOf A→
GraphOf A→
GraphOf A

a

b

c

d

1 2

2

>=> a

b

c

d

1 3

4

= a

b

c

d

2

4

f a = * 1 ⊲ b , 2 ⊲ c +
f b = * 2 ⊲ d +
f _ = *+

g b = * 1 ⊲ a , 3 ⊲ d +
g c = * 4 ⊲ d +
g _ = *+

a a a a a

b b b b b

c c c c c

d d d d d

f g f >=> g

1

2

4

6

2

2

1

3

4

Fig. 2. The connection operator

3.1 The Edge Semiring
The edge semiring on graphs (GraphOf V ,⊞, empty, >=>, return) is particularly useful because it

allows us to define some search algorithms. The constituent monoids are the overlay monoid

(GraphOf V ,⊞, empty), and the connection monoid (GraphOf V , >=>, return).
The overlay monoid, which is defined in Mokhov [2017], consists of a binary operator ⊞ and

an identity empty. The binary operator ⊞ takes the union of the edges of its operands, taking

the minimum weight for overlapping edges, and the identity is the graph with no edges: these

operations are diagrammed in Table 1.

The connection monoid is a little more complex (Table 2). The binary operator on this monoid,

>=>, connects corresponding edges, where the resulting weight of the new edge is given by the

minimum sum of the constituent edges. The identity, return, is a graph where every vertex has an

𝜖-weighted path to itself. Be careful to not be confused by the types here: return takes a vertex and

returns a weighted set (return : 𝑉 → Weighted 𝑉 ). It does not take a vertex and return a graph.

Recalling our definition of graphs (GraphOf 𝐴 = 𝐴→ Weighted 𝐴, Eq.(4)), we can see that return’s

type means it is a graph (return : GraphOf 𝑉 ).

Visualising how these operators work may help us understand them better. We can take the

two graphs in Table 2, call them 𝑓 and 𝑔, and redraw them in Fig.2 as a bipartite graph where the

vertices are duplicated. This form makes it easier to see what the connection operator is doing:

the edges a ↦→ b and b ↦→ d are connected, and the resulting edge has a weight equal to their sum.

There is also another edge a ↦→ d, but its weight is larger (6), so it is discarded.

The connection monoid is derived from the monad instance on weighted sets: in fact, the

connection monoid is specifically the endomorphism monoid on the Kleisli category of weighted
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sets. Here we give the implementation of return and, for intuition, pseudocode for >>=:

return 𝑥 = *𝜖 ⊲ 𝑥 + xs >>= 𝑘 = *((v •𝑤) ⊲ 𝑦) | (v ⊲ 𝑥) ∈ xs, (𝑤 ⊲ 𝑦) ∈ 𝑘 𝑥+

The return is simple: it produces a singleton set with the empty weight. For every entry v ⊳ 𝑥 in

xs, the expression xs >>= k applies the continuation k to x, adds the weight v to the output, and

concatenates the results. The actual code is not too much more complicated:

*+ >>= k = *+
(p ⊲ x :: xs) >>= k = (p ⋊ k x) ∪ (xs >>= k)

w ⋊ *+ = *+
w ⋊ p ⊲ x :: xs = w • p ⊲ x :: w ⋊ xs

(5)

w ⋊ xs adds the weight w to every entry in xs. ∪ takes the union of two weighted sets. Our

formalisation contains the proofs that show these functions respect the quotients on weighted sets.

The edge semiring and the vertex semiring (Section 3.5) can both be found in the Arrow li-

brary [Hughes 2000], where they are defined on Kleisli arrows for a MonadPlus.

3.2 Search Algorithms with the Edge Semiring
Under our framework, graph algorithms are graph transformations. In particular, some search

algorithms can be expressed as variants of transitive closure. Transitive closure on graphs is

diagrammed in Fig.1. The transitive closure of graph is graph
∗
, where the weight of the edge x ↦→ y

in graph
∗
is equal to the weight of the shortest path from x to y in graph.

Transitive closure has a natural interpretation as the Kleene star, where the Kleene star is an

operator ∗ that satisfies both of the following equations for a semiring (𝑆, ⊕, 0, ⊗, 1):
x
∗ ≡ 1 ⊕ (x

∗ ⊗ x) x
∗ ≡ 1 ⊕ (x ⊗ x

∗
)

On graphs, this operator could be naively implemented by simply copying either equation:

_
∗
: GraphOf A→ GraphOf A

g
∗
= 1 ⊕ (g

∗ ⊗ g)

(6)

_
∗′
: GraphOf A→ GraphOf A

g
∗′
= 1 ⊕ (g ⊗ g

∗′
)

(7)

Using the first definition Eq. (6) yields a function that computes, and the resulting weighted set

does contain the length of the relevant shortest paths (if treated lazily):

graph
∗
a ≡ *0 ⊳ a, 7 ⊳ b, 2 ⊳ c, 8 ⊳ c, 5 ⊳ d, 3 ⊳ b, . . . + (after applying the Weighted quotients)

≡ *0 ⊳ a, 3 ⊳ b, 2 ⊳ c, 5 ⊳ d, . . . +

Notice that this function traverses the graph in breadth-first order. Interestingly, the alternative

implementation Eq.(7) traverses the graph in depth-first order.

Another search algorithm, iterative-deepening search, can be implemented using exponentiation.

exp : S→ N→ S

exp x zero = 1
exp x (suc n) = x ⊗ exp x n

exp graph 0 a ≡ *0 ⊳ a+
· · ·

exp graph 3 a ≡ *9 ⊳ b, 11 ⊳ d, 4 ⊳ c, 10 ⊳ b+

The expression exp x n on monoids is n copies of x multiplied with itself, on graphs it is a graph

constructed of all the paths of length n in x. For some graph g, the expression exp g 3 v will return

a list of vertices 3 steps from v. Iterative-deepening search (ids) involves searching successively

deeper into a graph; using exponentiation this can be expressed as follows:

ids g = exp g 0 ⊕ exp g 1 ⊕ exp g 2 ⊕ exp g 3 ⊕ . . .

Using the semiring laws we show the definition above is equivalent to the other implementations of

transitive closure. These three search algorithms, breadth-first, depth-first, and iterative-deepening,

all compute the same graph transformation, but they differ in the order that they explore the graph.
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However, there is a problem: the Weighted set computed by graph
∗
a is infinite. The implemen-

tation of ∗ itself is recursive, and not well-founded. In fact, the definition in Eq.(6) does not pass

Agda’s termination checker. Even in a language like Haskell, where such a definition is acceptable,

it is fraught with unclear semantics and possible errors. For example, the alternative function

∗′ (which, under the star semiring laws, should produce an equivalent definition) will produce a

different weighted set, which will never return the actual shortest path to b. Some of this difficulty

comes from mixing coinduction with quotients: since the weighted set is unordered, how can we

productively return any element before another without imposing some kind of observable order?

The only way to deal with these problems is to address the coinduction inherent in the algorithm.

We do exactly this in Section 4, where we will introduce a coinductive version of the weighted set.

3.3 Algorithmic Combinators
In the example implementation of Hamiltonian (Section 1), we used some useful combinators, like

pathed and filtering. We will explain them in more detail here.

First, the pathed function:

mapn : (A→ B)→
(Neighbours A→ Neighbours B)

pathed : GraphOf V → GraphOf (List
+
V )

pathed g (vs :· v) =
mapn (𝜆 t → vs :· v :· t) (g v)

(8)

When used in combination with ∗ (or similar search functions), pathed tags each vertex with the

path taken to reach that vertex. The tag is a non-empty snoc list, which is constructed by appending

elements to the end with the constructor :·. For instance, the edge (a ↦→ d) ∈ graph
∗
becomes

an edge ( [a] ↦→ [a, c, d]) ∈ (pathed graph)∗ (for the graph in Fig. 1). This lets our path finding

algorithms actually produce observable paths.

The function works by converting each edge s ↦→ t to a collection of edges: for each non-empty

list p, an edge (p :· s) ↦→ (p :· s :· t). The graph produced by a function like ∗ consists of sums of

chains of >=>, so when ∗ is applied to a graph after pathed, the effect is that each vertex passed

through in a particular chain is accumulated and stored as a path on the last vertex of the chain.

(pathed graph)∗ = 1 ⊕ (pathed graph >=> (pathed graph)∗)
= exp (pathed graph) 0 ⊕ exp (pathed graph) 1 ⊕ exp (pathed graph) 2 ⊕ · · ·
⊇ exp (pathed graph) 2
= pathed graph >=> pathed graph

⊇ pathed {a ↦→ c} >=> pathed {c ↦→ d}
= {(p :· a) ↦→ (p :· a :· c) | 𝑝 ∈ List+ Vert}>=>

{(p :· c) ↦→ (p :· c :· d) | 𝑝 ∈ List+ Vert}
= {(p :· a) ↦→ (p :· a :· c :· d) | 𝑝 ∈ List+ Vert}
⊇ {[a] ↦→ [a, c, d]}

The second function, filtering, is useful for removing edges from the output of an algorithm.

filtering : (V → Bool)→ GraphOf V

filtering p v = if p v then * 0 ⊲ v + else *+
(9)

The graph filtering 𝑝 contains only the edges x ↦→ x where p x ≡ true. For instance, filtering even

is a graph of the natural numbers, where all of the even numbers have edges to themselves.

Connecting a graph to filtering has the effect of filtering the edges. So 𝑔 >=> filtering 𝑝 produces

a graph where only edges in 𝑔 that point to vertices for which the predicate 𝑝 holds are retained.
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3.4 More Efficient Representations
One of the advantages of describing algorithms using algebraic combinators is that the algebraic

laws give strong guarantees about semantics, and allow us to change concrete implementations

through homomorphisms while preserving those semantics. For instance, given a homomorphism

ℎ : Weighted A→ 𝐷 𝐴 to 𝐷 , which is a monoid and a monad, if computation is more efficient on

𝐷 , we can commute this homomorphism with any of the algorithms implemented here.

ℎ (𝑔∗ v) = (ℎ ◦ 𝑔)∗ v
If 𝐷 is some more efficient representation than Weighted, then the right-hand side of this equation

represents an optimisation.

A particularly strong framework for optimisation comes to us via Hinze [2012]. In brief, for

any algebra represented by a typeclass C, the free object for that algebra (over some variable type

𝐴) is isomorphic to the type ∀ X → C X → (A → X ) → X (where 𝑋 is some set). This type is

the “final encoding” of the free C. This type is also a monad (via the continuation monad), and it

implements some operations vert efficiently. In particular, >>= and algebraic operations from C are

O(1) (although performance analysis on this type can be subtle: we have to consider converting to

and from the type as well, which is not a constant-time).

This optimisation is particularly relevant to us, since the Weighted type is actually the initial

encoding of the free object for an algebra that we will call the weight semimodule.

Definition 3.2 (Weight Semimodule). Aweight semimodule consists of a semi-semiring (𝑆, ⊕, ⊗, 1)
and a commutative monoid (𝑉 ,∪, ∅), together with an operation ⋊ : 𝑆 → 𝑉 → 𝑉 , such that the

following properties hold:

(𝑥 ⊗ 𝑦) ⋊ 𝑧 = 𝑥 ⋊ (𝑦 ⋊ 𝑧) (𝑥 ⊕ 𝑦) ⋊ 𝑧 = (𝑥 ⋊ 𝑧) ∪ (𝑦 ⋊ 𝑧) 𝑥 ⋊ (𝑦 ∪ 𝑧) = (𝑥 ⋊𝑦) ∪ (𝑥 ⋊ 𝑧)

1 ⋊ 𝑥 = 𝑥 𝑥 ⋊ ∅ = ∅

A semi-semiring is a semiring without a 0, and has all of the same laws as a semiring, except for

those that involve 0.
The semi-semiring of relevance to us is fixed to be (𝑆,⊓, •, 𝜖), for some monus 𝑆 . Since the

Weighted type is the free such semimodule, it is isomorphic to the final encoding:

W A = ∀ (V : Type)→ isSet V → (mod : WeightSemimodule S-weight V )→ (A→ V )→ V

On this type, the operations ∪ and >>= are O(1), where they are O(𝑛) on Weighted. Since the two

encodings are isomorphic, W can be dropped-in as-is without fear of changing semantics.

In our formalisation we have proven thatWeighted is the free weight semimodule, and that there

is a split surjection from W 𝐴 toWeighted 𝐴. Unfortunately, proving that this is an isomorphism

requires parametricity, which is not available in Agda.

3.5 The Vertex Semiring
The edge semiring structured the combination of the edges of graphs; the vertex semiring organises

the combination of vertices. Where the edge semiring was useful for searching and transforming

graphs, the vertex semiring is useful for building them. The operations are diagrammed in Table 3.

The first operator here, ∗∗∗, takes a kind of product of two graphs with different vertex types. The

graph 𝑓 ∗∗∗ 𝑔 has vertices as the product of the vertices of 𝑓 and 𝑔, and an edge (𝑥 𝑓 , 𝑥𝑔) ↦→ (𝑦𝑓 , 𝑦𝑔)
has weight equal to the sum of the weights of the edges 𝑥 𝑓 ↦→ 𝑦𝑓 and 𝑥𝑔 ↦→ 𝑦𝑔 . The second operator,

+++, is a kind of disjoint union: 𝑓 +++ 𝑔 constructs a graph with vertices as the disjoint union of the

vertices of 𝑓 and 𝑔, and edges given by the union of their respective edges (the wmap function has

type (𝐴→ 𝐵) → Weighted 𝐴→ Weighted 𝐵).
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Table 3. Graph Combinators that Change the Vertices

_∗∗∗_ : GraphOf A→
GraphOf B→
GraphOf (A × B)

(g ∗∗∗ h) (vl , vr ) = do
x ← g vl

y← h vr

return (x , y)

a b ∗∗∗ c d = (a, c)

(a, d)

(b, c)

(b, d)

_+++_ : GraphOf A→
GraphOf B→
GraphOf (A ⊎ B)

(g +++ h) =
either (wmap inl ◦ g)

(wmap inr ◦ h)

a

b

c

+++ a

b

c

=

inl a

inl b

inl c

inr a

inr b

inr c

While these operators behave a little like the operators defined in the previous subsections, they

have the crucial difference of changing the type of the underlying graphs. As such, these operations

aren’t monoid or semiring operators on the GraphOf type, instead, they form a semiring on a graph

whose type depends on the values of its vertices.

Graph : Type1

Graph = 𝛴 [ V : Type ] × GraphOf V

unit : Graph

unit = ⊤ , return

void : Graph

void = ⊥ , absurd

The identity for ∗∗∗ is unit. The first component of the pair is the type of vertices, ⊤ in this case,

the type with one inhabitant; the second component is the neighbours function, which in this case

is return and indicates a graph with one path, the identity path. The graph with no vertices and no

paths is void (where absurd : ∀(𝐴 : Type).⊥ → 𝐴), and it is the identity for +++.
However, for these values to be the unit for their respective operators, equalities like unit∗∗∗𝑔 ≡ 𝑔

have to hold. If we unpack the pairs here we can see that we need to prove the equality (⊤×V ) ≡ V ,

where V is the type of vertices of the graph g. We can use Cubical Agda [Vezzosi et al. 2021] to

prove precisely this, via univalence (which states that any isomorphism 𝐴⇔ 𝐵 implies an equality

𝐴 ≡ 𝐵). We first prove that (⊤ × V ) is isomorphic to V , and then we prove that that isomorphism

is congruent through the equality on the right-hand-side of the pair. The proof of this is in our

formalisation. This is the only use of univalence in this paper: all other results don’t use the full

power of CuTT, rather they use just simple quotient types.

The Plan. We are roughly halfway through the paper, and at this point the focus is going to change

from describing graph algorithms to verifying them. Before moving on we will take a moment to

recap what we have covered so far, and sketch what we will prove in the latter sections.

Section 2 gave our representation of graphs, and Section 3 presented an algebraic approach

to search algorithms. The key development to bear in mind going forward is the ∗ function
(Section 3.2), which defines transitive closure. In our framework, ∗ is a specification of search: it

encompasses depth-first search, breadth-first search, and others, and the rest of the paper is devoted

to implementing that specification, and verifying the implementation.

As discussed already, while it is tempting to use the specification as an implementation (as we

did with Eqs. (6) and (7)), this ignores issues of well-foundedness. In Section 4, we will address

well-foundedness, and in Section 4.3 we will use the theory of completely iterative monads (CIMs)
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to describe a template (Lemma 4.1) for a particular class of functions that can be said to implement

recursive equations like Eq.(6) (and therefore ∗) in a well-founded way.

Finally, in Section 5, we will show how to instantiate this template while preserving the quotients

on graphs that we established in Section 2. This will culminate in the Neighbours type, which can

faithfully represent graphs as described in Section 2, can implement the graph algebras as described

in Section 3, and can implement coinductive search as specified in Section 4.3.

4 Coinduction on Graphs
We have tiptoed around the issue of coinduction until now. In reality, coinduction is central to our

graph representation and framework: the GraphOf type itself is in fact coinductive (even with an

inductiveWeighted type), and the transitive closure algorithms all can produce infinite results. This

section will finally deal with coinduction formally, and provide a new framework for graphs and

graph algorithms that can deal with infinite values in a principled way.

First, we will use the cofree comonad to construct a well-founded and efficient search algorithm

on possibly-infinite graphs (Section 4.1). Then we will make progress towards redefining that

algorithm as a graph transformation, using the coinductive resumption monad, from which we

will derive the Forest type, a drop-in coinductive replacement forWeighted (Section 4.2). Finally we

will use the theory of completely iterative monads (cims) to give a well-foundedness condition for

coinduction on graphs (Section 4.3), and in particular for ∗ (Section 3.2).

4.1 Searching Infinite Graphs
To implement our coinductive search algorithm we will use a fundamental coinductive type: the

cofree comonad [Ghani et al. 2003].

Cofree F A = 𝜈 X . A × F X (10) _◀_ : A→ F (Cofree F A)→ Cofree F A

A value of type Cofree 𝐹 𝐴 is a coinductive tree with internally-labelled nodes of type 𝐴, and a

branching structure given by 𝐹 . For instance, Cofree List is a rose tree [Ghani and Kurz 2007].

Unfortunately, the type definition of the Cofree comonad (Eq.(10)) is not strictly positive, and

as such is rejected by Agda. Though we know that 𝐹 in the definition must be positive, since it is

a functor, we can’t convince Agda of that fact on a meta-level. Furthermore, many higher-order

functions which use map on the 𝐹 will fail to pass the termination checker, even if they are truly

structurally recursive. In our formalisation, we specialise the definition of Cofree (and 𝜈 , etc.) for

the constructions that we formalise: Heap (Eq.(13)) and Bush (Eq.(21)).

The cofree comonad is defined using the greatest (i.e. coinductive) fixpoint 𝜈 .

𝜈 : (Type→ Type)→ Type ⟨⟨_⟩⟩ : F (𝜈 F )→ 𝜈 F out : 𝜈 F → F (𝜈 F )

An infinite nesting of 𝐹 s is given by 𝜈 𝐹 = 𝐹 (𝜈 𝐹 ) = 𝐹 (𝐹 (𝐹 (𝐹 (. . .)))). Its interface consists of a
constructor ⟨⟨_⟩⟩ and field 𝑜𝑢𝑡 . We can construct elements of 𝜈 with the anamorphism, or trace:

ana : (A→ F A)→ A→ 𝜈 F

out (ana 𝜙 r) = F [ ana 𝜙 ] (𝜙 r)

(11)

trace : (A→ F A)→ A→ Cofree F A

trace 𝜓 = ana (𝜆 x → x ,𝜓 x)

A copattern [Abel et al. 2013] is used to define ana, where out (ana 𝜙 𝑟 ) = . . . is equivalent to

writing ana 𝜙 𝑟 = ⟨⟨ . . . ⟩⟩. The expression 𝐹 [𝑓 ] : 𝐹 𝐴→ 𝐹 𝐵 maps 𝑓 : 𝐴→ 𝐵 over the functor 𝐹 .

The trace function can be used immediately as a graph algorithm:

trace : GraphOf A→ A→ Tree A Tree = Cofree Weighted

This takes a graph and produces a trace of searching through the graph from some starting node.
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trace graph a ≡
a ◀ * 7 ⊲ b ◀ * 1 ⊲ c ◀ * 3 ⊲ d ◀ * 5 ⊲ b ◀ · · · + , 1 ⊲ b ◀ · · · + +

, 2 ⊲ c ◀ * 3 ⊲ d ◀ * 5 ⊲ b ◀ · · · + , 1 ⊲ b ◀ · · · + +
(12)

We can now transform a graph into a concrete tree representing a trace through the graph. Using

the pathed function (Eq.(8)), this transformation can produce a tree of paths through the graph.

The next step of this algorithm is to sort this tree, linearising it into a list of paths, ordered from

least to greatest weight (and thereby allowing us to extract the shortest path). This linearisation

process can be defined as a transformation between different instances of Cofree. The result of this

algorithm, called on the graph in Fig.1, is a Chain (defined below), that looks like the following:

[ a ] ◀ 2 ∝ [ c , a ] ◀ 1 ∝ [ b , c , a ] ◀ 1 ∝ [ c , b , c , a ] ◀ 1 ∝ [ d , c , a ] ◀ · · ·

This is a Chain of all of the shortest paths from a to every (reachable) vertex in Fig.1, ordered by

weight, where each Link in the Chain contains the difference in weight between adjacent paths.

For instance, the shortest path from a is to itself, so it is at the head of the chain. Then, the distance

to the next-longest path (to c) is 2. The path to b is the third-shortest, and it passes from a to c and

then to b. This path has a total weight of 3, which can be calculated from the Chain by adding up

all of the preceding weights in the chain. The data types involved here are the following:

Chain = Cofree Link

Link A = Maybe (S × A)

pattern _∝_ p x = just (p , x)

pattern ⟨⟩ = nothing

To implement this transformation we need to flatten this tree structure while ordering the paths

according to weight. We need a function with the following type:

search : Tree A→ Chain A

To implement this function efficiently, we can treat the Tree as a heap: notice that, when measured

cumulatively, the weights in a Tree respect the heap ordering property (the weight of each node is

less than or equal to the weight of its parent). An example is helpful here for explanation: take the

traced tree in Eq.(12). While it certainly doesn’t obey the heap ordering property as-is (because, for

instance, b (with weight 7) is above c (with weight 1)), if we instead treat weights as cumulative (i.e.

c is semantically tagged with the weight it takes to reach it from the root), we get the following

tree, which does indeed respect the heap ordering property.

a ◀ * 7 ⊲ b ◀ * 8 ⊲ c ◀ * 11 ⊲ d ◀ · · · , 9 ⊲ b ◀ · · · + +
, 2 ⊲ c ◀ * 5 ⊲ d ◀ * 10 ⊲ b ◀ · · · + , 3 ⊲ b ◀ · · · + +

The cumulative weight here is implicit: we won’t actually transform the tree, rather we will

semantically treat each weight as if it is equal to the sum of all the weights of its ancestors (plus

itself). By this scheme, the root node has weight 0. For the heap property to hold on this cumulative

view of Tree, we need precisely the property that ∀𝑥,𝑦. 𝑥 ⩽ 𝑥 • 𝑦: this holds on all monuses.

What remains is to implement the necessary heap operations that would allow the transformation

of a Tree into a list. As it happens, the Tree type bears a striking structural resemblance to a

particularly efficient heap implementation: the pairing heap [Fredman et al. 1986]. We can adapt

the pairing heap functions to work on our Tree type, preserving this efficiency.

One important thing to note is that we will discard, for now, the quotients on the Tree type,

leaving us with the following type for comonadic, monus-based heaps:

Heap = Cofree (List ◦ (S ×_)) (13)
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Later we will see how to recover these quotients, but for now their inclusion would overcomplicate

the heap implementation unnecessarily.

The overall goal here is an implementation of search. We can make some progress towards that

implementation based only on the information we have so far. For instance, we know the type this

function must have, and we know that—as a coinductive function—it must be implemented using

ana Eq.(11). This leaves one missing piece: a function of type Heap 𝐴→ 𝐴 × Link (Heap 𝐴).
search : Heap A→ Chain A

search = ana ( {!!} : Heap A→ A × Link (Heap A))

The term {!!} is a hole: it denotes a missing piece of code that we have yet to write. This missing

function is a kind of popMin: it should return the lowest-weight value in the heap, paired with the

rest of the heap (if non empty). Since we know that the least-weight item in the heap is always at

its root, we can further refine this hole, where map2 : (A→ B)→ C × A→ C × B:

search : Heap A→ Chain A

search = ana (map2 ( {!!} : List (S × Heap A)→ Link (Heap A)) ◦ out)

This new hole is filled with the merges function.

merges : List (S × Heap A)

→ Link (Heap A)

merges [] = ⟨⟩
merges (x :: xs) = just (merges

+
x xs)

merges
+
: S × Heap A→ List (S × Heap A)

→ S × Heap A

merges
+
x1 [] = x1

merges
+
x1 (x2 :: []) = x1 ⊲⊳ x2

merges
+
x1 (x2 :: x3 :: xs) =

(x1 ⊲⊳ x2) ⊲⊳ merges
+
x3 xs

This function collapses a list of heaps to a single heap: it doesn’t follow a normal foldr-like pattern,

instead performing a two-level merge which is vital to the performance of the heap as a whole.

It uses the ⊲⊳ function to combine two weighted heaps.

_⊲⊳_ : S × Heap A→ S × Heap A→ S × Heap A

(wl , l
◀ ls) ⊲⊳ (wr , r

◀ rs) = if does (wl ⩽? wr ) then wl , l
◀ (wr

·− wl , r
◀ rs) :: ls

else wr , r
◀ (wl

·− wr , l
◀ ls) :: rs

The merge of two weighted heaps 𝑥 ⊲⊳ 𝑦 produces a new heap with the lowest-weight node of

𝑥 and 𝑦 at the root, and the higher-weighted node as a subtree of that new heap. Note that the

heap inserted as a subtree has its weight adjusted (in the first branch of the if-expression, we have

𝑤𝑙 , 𝑙 ◀ (𝑤𝑟 ·− 𝑤𝑙 , 𝑟 ◀ rs) :: ls, instead of 𝑤𝑙 , 𝑙 ◀ (𝑤𝑟 , 𝑟 ◀ rs) :: ls). This is because the weights are
semantically cumulative: the weight attached to 𝑟 should be equal to 𝑤𝑟 ; if it was placed below

𝑤𝑙 in the new tree it would be semantically equal to 𝑤𝑙 • 𝑤𝑟 , so we have to correct for this by

subtracting the parent weight, yielding𝑤𝑙 •𝑤𝑟 ·−𝑤𝑙 = 𝑤𝑟 .

Finally, the search function is as follows:

search : Heap A→ Chain A

search = ana (map2 merges ◦ out)

This function has complexity O(𝑛 log𝑛), where 𝑛 is the number of elements explored in the chain.
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There is a similar algorithm presented by Kidney and Wu [2021]: that adaptation of the pairing

heap, however, is based on the free monad, changing the mechanics of the algorithm. Furthermore,

that version is implemented only in Haskell, and does not deal with coinduction.

4.2 The Coinductive Resumption Monad
To express coinductive algorithms as graph transformations, we need a coinductive variant of the

Weighted type. What we need is a data structure with similar well-foundedness and coinductive

properties to the cofree comonad, but has a monad instance similar toWeighted, so that the edge

semiring is preserved. This structure is the coinductive resumption monad, Res [Piróg and Gibbons

2014]. To define Res we will first need the free “completely iterative monad” (cim):

F
∞
A = 𝜈 X . (F X ⊎ A)

We will return to cims in more detail in a moment, for now note that this type is identical to the

cofree comonad Eq.(10) except that the binary product (×) has been replaced with disjoint union (⊎).
It also bears a resemblance to the free monad (Free 𝐹 𝐴 = 𝜇𝑋 . 𝐹 𝑋 ⊎𝐴), but it uses the coinductive
fixpoint 𝜈 instead of the inductive fixpoint 𝜇. This type is a possibly-infinite tree with leaves labelled

with a value of type 𝐴, and branching structure given by 𝐹 . It is a monad for any functor 𝐹 .

The coinductive resumption monad, built on∞, is defined as follows:

Res 𝛴 M = M ◦ (𝛴 ◦ M)
∞

Res Σ 𝑀 is a monad for any functor Σ and monad 𝑀 . It is a possibly-infinite tree, with multiple

layers of effects from𝑀 being interspersed by Σ.
The type 𝐹∞ is a monad with discrete layers of effects given by 𝐹 : the monadic bind on 𝐹∞

preserves this distinction, maintaining the separation between layers. In contrast, the type Res Σ 𝑀

has discrete layers of Σ, but the effects given by𝑀 can interact: the monadic bind 𝑥 >>=𝑘 on Res Σ 𝑀

combines the effects at the leaves of 𝑥 with the top-level effects in 𝑘 .

For this paper, the relevant instantiation of Res sets Σ ≔ id, and𝑀 ≔ Weighted.

Forest =Weighted ◦Weighted
∞

(14)

This type inherits the semimodule structure fromWeighted, however this type is tree-shaped, where

Weighted was a flat collection.

The monadic bind on Forest grafts sub-trees into leaves.

xs = * 7 ⊲ ⟨⟨ inl * 1 ⊲ ⟨⟨ inr a ⟩⟩
, 2 ⊲ ⟨⟨ inr b ⟩⟩ + ⟩⟩

, 3 ⊲ ⟨⟨ inr c ⟩⟩ +

k = 𝜆 { b→ * 3 ⊲ ⟨⟨ inr 0 ⟩⟩ +
; c → * 5 ⊲ ⟨⟨ inr 1 ⟩⟩

, 6 ⊲ ⟨⟨ inr 2 ⟩⟩ +
; _→ *+ }

xs >>= k ≡ * 7 ⊲ ⟨⟨ inl * 5 ⊲ ⟨⟨ inr 0 ⟩⟩ + ⟩⟩ , 8 ⊲ ⟨⟨ inr 1 ⟩⟩ , 9 ⊲ ⟨⟨ inr 2 ⟩⟩ +

Notice that two layers of monadic effects are merged, but the rest are kept separate: the 3 weight in

xs is added to 5 and 6 in the output, but the 7 weight, being insulated one level above any leaves, is

preserved. This allows the Forest type to represent coinductive algorithms: infinite structure can

be guarded under nested sub-trees; in the Weighted type, such nesting would have to be flattened,

making the structure too eager and making it impossible to represent infinite computations.
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𝑋 𝑀𝐴

𝑀 (𝑋 +𝐴) 𝑀2𝐴

𝑒†

𝑒

𝑀 [𝑒† ▽ 𝜂]
𝜇

(a) The solution to a recursive equation

𝑀 (𝑋 +𝐴) +𝐴 𝑀 (𝑋 +𝐴)

𝑋

𝜎 ▽ 𝜂 ◦ inr

𝑒𝑒𝑖

(b) Factoring a guarded equation

Fig. 3. Equations on cims

4.3 Completely Iterative Monads
The Res type is an example of a completely iterative monad [Aczel et al. 2003; Elgot et al. 1978;

Milius 2005]: informally, this is a class of monads that support a certain kind of coinduction. For

our purposes, cims will give us a formal theory that lets us describe what it means for an algorithm

to be a well-founded implementation of recursive definitions like the Kleene star Eq.(6).

The machinery for coinduction with cims centres around recursive, guarded equations. A recur-

sive equation in this context is a morphism 𝑋 → 𝑀 (𝑋 +𝐴) that represents a recursive function.
In the equation, 𝐴 is the final result, and 𝑋 is the type of variables being recursed over. Let’s use

∗′ Eq.(7) as an example: in this recursive function, both 𝑋 and 𝐴 are vertices of the graph. Below,

we have rewritten ∗′ to dfs by inlining the definition of the edge semiring operators; the equation

morphism corresponding to dfs is dfse .

dfse : GraphOf A→ A→ Forest (A ⊎ A)

dfse g x =

return (inr x) ∪ (g x >>= 𝜆 y→ return (inl y))

dfs : GraphOf A→ A→ Forest A

dfs g x =

return x ∪ (g x >>= 𝜆 y→ dfs g y)

In dfs there is a recursive call (dfs g y), in the corresponding equation dfse notice that this recursive

call is replaced with a left injection into the sum (inl y).

The solution to the equation—the mechanism for turning dfse into dfs—is defined as the morphism

𝑒† such that the diagram in Fig.3a commutes. Of course, not every equation has a solution: for cims,

all guarded equations have a solution.

Guardedness for cims is defined using ideals. Every cim 𝑀 has a related functor 𝑀 , called its

ideal, with a natural transformation 𝜎 : 𝑀 → 𝑀 . Informally,𝑀 𝐴 is the “guarded” subset of𝑀 𝐴; it

contains all of the computations which “make progress”, in a coinductive sense. It does not include

things like return x. A guarded equation, then, is one that factors through this ideal, as in Fig.3b.

We can formalise this notion of a cim as follows. First, given a monad𝑀 and its ideal𝑀 we can

define the equation and flat equation morphisms:

Equation X A = X → M (X ⊎ A) Flat X A = X → M (X ⊎ A) ⊎ A

A well-founded equation is some 𝑒 : Equation 𝑋 𝐴 such that ∃(𝑒𝑖 : Flat 𝑋 𝐴). 𝑒 ≡ (𝜎 ▽ 𝜂 ◦
inr) ◦ 𝑒𝑖 . It can be cumbersome to work with “equations 𝑒 such that they factor into 𝑖 : . . . ”, so

instead we will work with the Flat type directly. A cim, then, is a monad𝑀 with an ideal𝑀 where

there is a function ‡ from a Flat morphism to a Solution morphism 𝑋 → 𝑀 𝐴:

_
‡
: Flat X A→ Solution X A Solution X A = X → M A
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That makes the diagram in Fig.3a commute:

_Solves_ : Solution X A→ Equation X A

→ Type

e
†
Solves e = e

† ≡ 𝜇 ◦M[ e
† ▽ 𝜂 ] ◦ e

solution : (ei : Flat X A)→
ei
‡
Solves (𝜎 ▽ 𝜂 ◦ inr) ◦ ei

Notice that coinduction, or, indeed, recursion, isn’t mentioned directly here: this is a formalisation

of coinduction that does not perform coinduction itself. It is any implementation of this class that

will have to perform the well-foundedness: the burden of proof is shifted to the implementer.

The ideal for Forest is the same as the ideal for the coinductive resumption monad. It is as follows:

Forest =Weighted ◦ Forest 𝜎 : Forest A→ Forest A

𝜎 =Weighted[ ⟨⟨_⟩⟩ ◦ inl ]

In other words, the ideal of a Forest is a Forest with at least two layers of nesting. The following is

a guarded equation, with its solution on the right:

verts : X → Forest (X ⊎ Vert) ⊎ Vert

verts x = inl * 1 ⊲ return (inr a)

, 2 ⊲ return (inl x) +

soln = * 1 ⊲ ⟨⟨ inl * 0 ⊲ ⟨⟨ inr a ⟩⟩ + ⟩⟩
, 2 ⊲ ⟨⟨ inl * 1 ⊲ ⟨⟨ inl * 0 ⊲ ⟨⟨ inr a ⟩⟩ + ⟩⟩

, 2 ⊲ ⟨⟨ inl · · · ⟩⟩ + ⟩⟩ +

The solution on the right is the infinitely-nested forest generated by layering verts on the left:

soln ≈ verts (verts (verts (. . .))).
The guardedness condition given above doesn’t quite work for equations like dfse . The factorisa-

tion in Fig.3b through𝑀 (𝑋 +𝐴) +𝐴, allows only guarded effects to be present in the step function.

However, for functions like dfs, there are both guarded and unguarded effects in the step function

(return (inr x) is unguarded), but the equation is still well-founded, since all recursion is guarded.

We define a new guardedness condition that suits dfse better: it is given in Lemma 4.1. This

factorisation condition allows effects on the right-hand-side of the equation, but only the parameters

(𝐴) may be returned purely; all variables for recursion must be guarded by the ideal (𝑀 𝑋 ). Any

equation that factors in this way also factors as Fig.3b.

Lemma 4.1. For a cim𝑀 , any equation which factors through𝑀 (𝑀 𝑋 +𝐴) as follows has a solution:

𝑀 (𝑀 𝑋 +𝐴) 𝑀 (𝑋 +𝐴)

𝑋

𝜇 ◦ 𝑀 [𝜎 ◦ 𝑀 [inl ] ▽ 𝜂 ◦ inr ]

𝑒𝑒 𝑗
(15)

Proof. Given an equation 𝑒 : 𝑋 → 𝑀 (𝑋 +𝐴), which factors through 𝑒 𝑗 as in Eq.(15), we must

show that it has a solution 𝑒† : 𝑋 → 𝑀 𝐴.
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We first construct an equation 𝑒 : 𝑀 𝑋 → 𝑀 (𝑀 𝑋 +𝐴), which factors as follows:

𝑀 (𝑀 𝑋 +𝐴) +𝐴 𝑀 (𝑀 𝑋 +𝐴)

𝑀 𝑋

𝜎 ▽ 𝜂 ◦ inr

𝑒𝑒𝑖 = inl ◦ 𝜇 ◦ 𝑀 [𝑒 𝑗 ]

By guardedness, this equation has a solution 𝑒† : 𝑀 𝑋 → 𝑀 𝐴, shown below on the left, from

which we can derive a solution 𝑒† = 𝜇 ◦𝑀
[
𝑒† ▽ 𝜂

]
◦ 𝑒 𝑗 , shown below on the right.

𝑀 𝑋 𝑀 𝐴 𝑋 𝑀 𝐴

𝑀 (𝑀 𝑋 +𝐴) 𝑀2𝐴 𝑀 (𝑋 +𝐴) 𝑀2𝐴

𝑒†

𝑒

𝑒† = 𝜇 ◦ 𝑀 [𝑒† ▽ 𝜂] ◦ 𝑒 𝑗

𝑒

𝑀 [𝑒† ▽ 𝜂]
𝜇

𝑀 [𝑒† ▽ 𝜂]
𝜇

What remains is to show that 𝑒† is indeed a solution, i.e. that the diagram on the right commutes,

𝑒† = 𝜇 ◦𝑀 [𝑒†▽𝜂] ◦ 𝑒 . This is proven in our formalisation, in the module Codata.CIM, or linked

here. □

Using this guardedness condition, we can factor dfs as follows:

dfsj : (A→ Forest A)→ A→ Forest (Forest A ⊎ A)

dfsj g x = return (inr x) ∪ return (inl (g x))

Notice that the type of the input graph had to be changed as well: we can only search graphs where

there is a guarded step between a vertex and its neighbours. This condition makes sense! The only

way for search to be productive is if every step is itself productive. It is possible to artificially add

this guardedness step (simply with return◦), so dfs can be used with any graph, but this technique

will not work in the next section where our guardedness conditions become more sophisticated.

The † we define in this lemma is analogous to the ∗ function; an instantiation of † that satisfies
the Solves predicate is an implementation of search.

Summary. This section has explored coinduction in the context of graph algorithms, first using

the Heap type to implement search through a graph. Then, we explored the Forest type, a data

type suitable for representing the neighbours of a vertex in a weighted graph, which can replace

the Weighted type as-is. It is a monad and a monoid, so the graph construction operations defined

previously still apply, and it is coinductive, meaning that it can be used to define corecursive

algorithms, of which search is an example. Finally, using the theory of cims, we gave a concise

guardedness condition, which gives a template for implementing ∗.

5 Quotienting Coinductive Structures
While the Forest type (Eq.(14)) does function as a data structure for representing the neighbours of

a vertex in a graph, it isn’t a perfect fit as the coinductive version ofWeighted. In particular, the

Forest type is missing some quotients: it distinguishes some graphs which should be semantically

equal. Take, for example, a simple graph with one edge a ↦→ b with weight 2. Both 𝑔1 and 𝑔2 below

are valid representations of this graph, despite containing observably different Forests.

g1 a = * 2 ⊲ ⟨⟨ inr b ⟩⟩ + g2 a = * 1 ⊲ ⟨⟨ inl * 1 ⊲ ⟨⟨ inr b ⟩⟩ + ⟩⟩ +
However, it is difficult to quotient out this difference. The thing distinguishing 𝑔1 and 𝑔2 above is

the level of nesting. But since we use this nesting to guard coinduction, we can’t just “forget” it

with a quotient without breaking well-foundedness.
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The difficulty is similar to the one faced by the delay monad [Chapman et al. 2019]. In general,

dependently-typed programming languages can handle simple inductive types well. Coinductive

types are less well supported, but there are a number of techniques available [Abel and Pientka

16ed; Abel et al. 2013; Gibbons and Hutton 1999]. Quotient types are less supported still, although

with the recent development of Cubical Type theory [Vezzosi et al. 2021] they are quickly catching

up [see also: Hewer and Hutton 2024]. It is the combination of the two—coinductive, quotiented

types—that causes problems for us. While there has been some work in this direction [Birkedal et al.

2016; Joram and Veltri 2023; Veltri and Vezzosi 2023], these types remain difficult to work with.

This section will construct a coinductive version of the Weighted type: a coinductive, quotiented

weighted set, that can serve as a representation for the neighbours of a graph that allows for search

algorithms to be expressed as graph transformations in a well-founded way. This representation

is based on a simple “bounding” operator (Section 5.1). We will use this operator to implement a

well-founded search algorithm. Then, in Section 5.2, we will use this operator to quotient the Forest

type, yielding the Bush type. Unfortunately, this type doesn’t have a monad instance without a

certain choice principle. In Section 5.3 we will develop an alternative type (Neighbours) that does

have a monad instance; finally, in Section 5.4 we will show that this type is a cim, and use this to

implement a search algorithm.

5.1 A Terminating Bounding Operator
The strategy for quotienting coinductive types in this section will be to find a representation of the

coinductive structure that doesn’t actually rely on coinduction internally. These representations

will use a kind of step-indexing [Appel and McAllester 2001], where the indexing quantity is weight.

The crucial function is the following “bounding” operator:

≻ : Weighted 𝐴→𝑊 → Weighted 𝐴

𝑠 ≻𝑤 = *𝑢 ⊲ 𝑥 | 𝑢 ⊲ 𝑥 ← 𝑠,𝑢 ⩽ 𝑤+
(16)

The expression 𝑠 ≻𝑤 returns a set containing all of the entries in 𝑠 with weights smaller than𝑤 .

*2 ⊲𝑤, 5 ⊲ 𝑥, 1 ⊲ 𝑦, 3 ⊲ 𝑧, + ≻ 2 = *2 ⊲𝑤, 1 ⊲ 𝑦+

We will explore the theory of this operator and the representations it gives rise to in the rest of

this section. First, let’s use it to properly terminate depth-first search.

A simple way to reimplement ∗ (Eq.(6)) to be well-founded is to add a N parameter.

∗≻ : GraphOf 𝐴→ N→ GraphOf 𝐴

g∗≻ 0 = 0

g∗≻(𝑛+1) = 1 ⊕ ((g ∗≻ 𝑛) ⊗ g)
(17)

g ∗≻ n returns a list of all vertices n or fewer steps away from r in the graph g. The notation gives

a hint as to the semantics: it looks like the composition of two functions, ∗ and ≻. Of course, if
we had implemented the function that way it would no longer be well-founded, since one of the

intermediate steps would have performed unbounded recursion.

Instead, we write a single recursive function that performs both ∗ and ≻. Because we recurse on
the natural-number argument, this algorithm is clearly well-founded.

We will next generalise this technique to use a certain class of weights, rather than just N. For a
weight of type 𝑆 , the new version of ∗≻ will have the following type:

∗≻ : GraphOf 𝐴→ 𝑆 → GraphOf 𝐴

And we could imagine implementing it something like the following:

(g ∗≻𝑤) v = *𝜖 ⊲ v + ∪ * p • q ⊲ y | p ⊲ 𝑥 ← g v, 𝑝 ⪯ 𝑤, 𝑞 ⊲ y ← (g ∗≻ (𝑤 ·− 𝑝)) 𝑥+ (18)
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The function (g ∗≻ 𝑤) v returns a weighted set of all vertices reachable from v in paths with

weights no greater than𝑤 . It returns a weighted set consisting of first v, with weight 𝜖 (since every

vertex is reachable by itself), and then recursively searches from the neighbours of v, ignoring

neighbours whose edges weigh more than𝑤 , and continuing the search with a new reduced weight

bound of𝑤 ·− 𝑝 , where 𝑝 is the weight of the edge from v to the vertex in question.

(graph ∗≻ 5) a = *0 ⊲ a, 2 ⊲ c, 3 ⊲ b, 5 ⊲ d, 4 ⊲ c+

Justifying termination on Eq. (18) is more difficult than on Eq. (17). In the case of Eq. (17), the

recursive call g ∗≻ 𝑛 is safe because its argument (𝑛) is structurally smaller than the argument to

the top-level function (𝑛 + 1 in g ∗≻ (𝑛 + 1)). In the case of Eq.(18), however, the recursive call is

g ∗≻ (𝑤 ·− 𝑝), and the top-level call is g ∗≻𝑤 . For this call to be safe, 𝑤 ·− 𝑝 must be structurally

smaller than𝑤 : it must be smaller than𝑤 according to some well-founded relation.

A relation ≺ is well-founded if every chain 𝑥1 ≺ 𝑥2 ≺ . . . ≺ 𝑥𝑛 , is finite. This is a generalisation of

the “structurally smaller” recursion condition that many total languages test for. To verify Eq.(18)

we need to come up with a well-founded relation on monuses such that𝑤 ·− 𝑝 ≺ 𝑤 holds.

The simple less-than relation on monuses won’t work: while this has a lower bound (∀𝑥 .𝜖 ⪯ 𝑥 ),

consider (Q+, +, 0), the additive monoid on the positive rational numbers. While this forms a valid

monus, the less-than relation can construct infinite chains (𝑥 > 0 =⇒ 𝑥 > 𝑥
2
> 𝑥

3
> 𝑥

4
> . . .).

Instead, we’ll introduce the following relation ≺𝑠 , for some step size 𝑠:

𝑥 ≺𝑠 𝑦 ⇐⇒ 𝑥 • 𝑠 ⪯ 𝑦 ⇐⇒ ∃𝑘. 𝑦 = 𝑥 • 𝑠 • 𝑘 (19)

This relation states that 𝑥 is no greater than 𝑦, and the difference between 𝑥 and 𝑦 is at least 𝑠 .

When 𝑠 = 𝜖 , the relation reduces to the normal algebraic relation (i.e. 𝑥 ≺𝜖 𝑦 ⇐⇒ 𝑥 ⩽ 𝑦), but

when 𝑠 ≠ 𝜖 this defines a less-than relation that may be suitable for well-founded recursion.

Definition 5.1 (Well-Founded Monus). A well-founded monus is one where the relation ≺𝑠 , for
𝑠 ≠ 𝜖 , is well-founded. We further require the monus to be cancellative.

And indeed ≺𝑠 on N as well as Q+ is well-founded. We require the monus to be cancellative (i.e. 𝑥•
is injective for all 𝑥 ) for proofs like the one below.

One caveat of this relation is that algorithms using it have a minimum “resolution”. For a recursive

call to be safe, it must have a step size of at least 𝑠 . In practice, this can mean that, for instance, a

graph being searched cannot have edges of weight smaller than 𝑠 . This is called the step condition.

Let’s use this relation to verify the implementation of ∗≻ above is well-founded. The recursive

call that needs to be verified is (g ∗≻ (𝑤 ·− 𝑝))𝑥 . This call is guarded by a condition that 𝑝 ⪯ 𝑤 , so

we know this condition holds before the call is made. The proof is as follows:

𝑤 ·− 𝑝 ≺𝑠 𝑤 ⇐⇒ {Definition of ≺𝑠 }
(𝑤 ·− 𝑝) • 𝑠 ⪯ 𝑤 ⇐⇒ {Adding 𝑝 to both sides}
(𝑤 ·− 𝑝) • 𝑠 • 𝑝 ⪯ 𝑤 • 𝑝 ⇐⇒ {Rearranging}
(𝑤 ·− 𝑝) • 𝑝 • 𝑠 ⪯ 𝑤 • 𝑝 ⇐⇒ {𝑝 ⪯ 𝑤 =⇒ (𝑤 ·− 𝑝) • 𝑝 = 𝑤}
𝑤 • 𝑠 ⪯ 𝑤 • 𝑝 ⇐⇒ {Cancel𝑤}
𝑠 ⪯ 𝑝 □ {The step condition}

To actually practically implement an algorithm using this well-founded recursion principle we

will use the following data type:

data Acc _≺_ x where acc : (∀ y→ y ≺ x → Acc _≺_ y)→ Acc _≺_ x
A well-founded relation ≺ is one where it is possible to construct a value Acc _ ≺ _ x, for any x. A

well-foundedmonus is one whereby a function exists with the type∀𝑠 → 𝑠 . 𝜖 → ∀𝑥 → Acc ≺𝑠 x.
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We won’t include an example of using Acc here, as it introduces a lot of clutter and boilerplate that

is not relevant to the theory, but we use it to prove the later well-foundedness lemmas in the paper.

5.2 Quotienting by Up-To Equivalence
Our first attempt at a quotiented version of Forest will rely on the following up-to operator:

_|_≻_ : Forest A→ Step→W →Weighted A (20) Step = ∃ s × s . 𝜖

The expression xs | s ≻ w returns the contents of the tree xs, inspected to the depth w. As a

result, it needs to use the supplied weight to bound termination, as Forest is a coinductive structure.

For that purpose, this function also takes a Step, which is used to facilitate stepwise well-founded

recursion via the well-founded monus (Definition 5.1).

Crucially, the result of this function collapses all of the level structure in the source tree. As

such, it is suitable as a function to the equivalence class of trees quotiented by ignoring the levels.

Practically speaking, that means we will give our new tree type as the Bush type quotiented by the

following equivalence relation:

Bush A = Forest A / Equiv-UpTo (21) Equiv-UpTo xs ys =

∀ s w→ xs | s ≻ w ≡ ys | s ≻ w

There are a number of positive aspects to this type that might not be immediately apparent.

Firstly, although the function Eq. (20) is “lossy”, in that it ignores edges smaller than the step

condition, the corresponding quotient is not, because of the universal quantification. Informally, if

two structures are indistinguishable at any resolution, then they must be truly equal.

Secondly, since the type is quotiented by a function into an equivalence class, the original

quotients on the Forest type are now superfluous, as the Eq. (20) function will find them for us

anyway. As a result, we can define a new Forest type that is a little easier to work with:

Forest = List ◦ ((W ×_) ◦ List)∞

This is the same type as in Kidney and Wu [2021]; it allows zero-weight vertices to be placed in the

lowest level forest without being tagged with a weight. This makes especially the heap operations

(Section 4.1) simpler. Those heap operations are largely unchanged; here are the few differences:

_⊲⊳_ :W × Forest A→W × Forest A→
W × Forest A

(wl , ls) ⊲⊳ (wr , rs) with wl ⩽|⩾ wr

... | inl (wr
·-wl , _) = wl , ⟨⟨ inl (wr

·-wl , rs) ⟩⟩ :: ls
... | inr (wl

·-wr , _) = wr , ⟨⟨ inl (wl
·-wr , ls) ⟩⟩ :: rs

partition : (A→ B ⊎ C)→ List A→
List B × List C

swap : A × B→ B × A

merges : List (W × Forest A)→
Link (Forest A)

popMin : Forest A→ List A × Link (Forest A)

popMin = map2 merges ◦ swap ◦ partition out

search : Forest A→ Chain (List A)

search = ana popMin

This search algorithm creates a Chain of Lists of vertices of the same weight; to have this algorithm

obey the quotient, we have to swap out those Lists for sets, and accumulate along the returned

Chain. We have not formalised this quotient-respecting version of search; however, Bush has a

more serious problem: the monad instance.

Unfortunately, the Bush type runs into trouble when it comes to implementing the monad

operations (join, in particular). This is actually a well-known difficulty: in order to implement
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join on a set quotient, a kind of choice principle is required on certain types. Here, the partially-

implemented join illustrates the problem:

join : Bush (Bush A)→ Bush A

join = rec/ squash/ join-alg join-coh

join-alg : Forest (Bush A)→ Bush A

join-coh : (x y : Forest (Bush A))→
Equiv-UpTo x y→
join-alg x ≡ join-alg y

The join-alg function is the problem here: it needs to somehow recurse through the coinductive

type Forest, and extract the quotients from its internals. It is not easy (not possible, we conjecture)

to write a terminating implementation of such a function. Chapman et al. [2019, section 5] explains

the problem in more detail: at some point, a kind of choice function is needed.

5.3 An Indexed Representation
Our final representation of search spaces will be derived directly from the ≻ Eq.(16) operator, and

specifically from the theory of semigroup actions.

Definition 5.2 (Semigroup Action). A (right) semigroup action for a semigroup 𝑆 and a set 𝐴 is an

operator · : 𝐴→ 𝑆 → 𝐴 such that:

∀𝑥,𝑦, 𝑧. (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 • 𝑧) (22)

Weights form a semigroup under the min (⊓) operation, and the bounding operator ≻ Eq.(16)

implements a corresponding semigroup action.

∀ s v w→ (s ≻ v) ≻ w ≡ s ≻ (v ⊓ w) (23)

There is also such a thing as a monoid and a group action; these must follow the same law as the

semigroup action Eq.(22), as well as the further law regarding the neutral element:

∀𝑥 . 𝑥 · 𝜖 = 𝑥 (24)

The • monoid on weights implements a (left) monoid action with ⋊ Eq.(5).

There is a representation theorem for group actions that we can use to derive a representation of

weighted sets. To get to this representation theorem we will need some category theory.

Definition 5.3 (𝑆-Sets). For a semigroup 𝑆 , there is a category 𝑆-Set of semigroup actions. The

objects of this category are sets acted upon by 𝑆 , and the morphisms are equivariant maps, which

are functions between sets 𝑓 : 𝑋 → 𝑌 that commute with the actions:

∀𝑥,𝑦. 𝑓 𝑥 · 𝑦 = 𝑓 (𝑥 · 𝑦)

Any semigroup actually acts on itself, where · = •. As a result, 𝑆 is an object in 𝑆-Set. Similarly,

any monoid𝑀 is an object in its own𝑀-Set. The monoid object has the special property of being a

representation for the forgetful functor. This means that for a given object 𝑋 , the arrows ∥𝑀 ∥ → 𝑋

(where ∥𝑀 ∥ is the object for the monoid𝑀) is isomorphic to |𝑋 | (where |𝑋 | is the underlying set
for the object 𝑋 ). To make this concrete, given the following definition of arrows:

X −→ Y = 𝛴 [ f : | X | → | Y | ] × ∀ x y→ f x · y ≡ f (x · y)
we have the isomorphism:

(∥ M ∥ −→ X )⇔ | X |
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Now, recall that there is a semigroup action on the Weighted type. This representation theorem

seems to suggest that there is an isomorphic representation using the indexing operation. However,

there’s an issue: weights are not (necessarily) a monoid. There is no neutral element, no∞ such

that ∀𝑥 . 𝑥 ⊓ ∞ = 𝑥 . This means that one direction of the isomorphism fails: we only have a

monomorphismWeighted 𝐴 ↣ (∥𝑊 ∥ −→ Weighted 𝐴).
Far from being a problem, though, the lack of an inverse properly captures the desired semantics

of the representation. TheWeighted type is inductive, remember, and we’re looking for a way to

represent its coinductive variant. This coinductive variant should be larger than the inductive:

that’s exactly what’s expressed by the monomorphism.

From another perspective, if there were a largest weight ∞, we would be able to apply the

function ∥𝑊 ∥ −→ Weighted 𝐴 to it, and get back the corresponding Weighted 𝐴. But if this

function represents some infinite search, it won’t fit in the inductive type Weighted 𝐴.

All of this together means that ∥𝑊 ∥ −→ Weighted 𝐴 is a good representation of a coinductive

Weighted. The actual type corresponding to ∥𝑊 ∥ −→ Weighted 𝐴 is as follows:

record Neighbours A where
field _≻_ : W →Weighted A

neighbourly : Neighbourly _≻_

Neighbourly : (W →Weighted A)→ Type

Neighbourly f =

∀ v w→ v ⩾ w→ f v ≻ w ≡ f w

From a high level, Neighbours represents a coinductive search routine: given a weight, it performs

a search, returning all the results within the supplied weight bound. It is a (dependent) pair, where

the first component, named ≻, is a function𝑊 → Weighted 𝐴 that takes a weight and returns

the weighted set of all values that weigh less than the supplied weight. This function is named

to be reminiscent of the ≻ function (Eq.(16); note the different number of vertical bars). Since ≻
is a field in a record, as a function ≻ has type Neighbours 𝐴 → 𝑊 → Weighted 𝐴 (compare to

≻ : Weighted 𝐴→𝑊 → Weighted 𝐴).

The second component of the type Neighbours is a proof that the first function is “Neighbourly”.

This is a coherency condition: it ensures that the first component, the ≻ function, is well-behaved.

Semantically, ≻ should behave like a partially-applied ≻: it should return all values in its search space
with a weight smaller than the supplied argument. However, we can imagine some badly-behaved

function that returns different values at different weights (𝜆𝑤. if 𝑤 ≡ 1 then *1 ⊲ x+ else *1 ⊲ y+).
Neighbourly is a predicate that prohibits such functions (as well as other incoherencies); it is actually

equivalent to the predicate ∀𝑥,𝑦. 𝑓 𝑥 · 𝑦 = 𝑓 (𝑥 · 𝑦), the coherence condition on arrows in 𝑆-Set. It

is slightly easier to work with Neighbourly in this context, however.

To define a value that inhabits the Neighbours type, we have to implement the search routine,

and show that it is “Neighbourly”. One such routine is the trivial search, which always returns a

single element with zero weight.

𝜂 : A→ Neighbours A

𝜂 x ≻ _ = * 𝜖 ⊲ x +
𝜂 x .neighbourly v w v⩾w = 𝜂-lemma

The search routine here is a constant function that returns a singleton weighted set containing x.

The neighbourly proof has type *𝜂 ⊲ x + ≻w ≡ *𝜂 ⊲ x+, and is given by 𝜂-lemma.

A slightly more complex function is the one that searches a finite weighted set.
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searched : Weighted A→ Neighbours A

searched xs ≻ w = xs ≻ w

This function (searched) converts a finite weighted set into a value of type Neighbours. The routine

here searches the supplied set (xs) to the given depth, by using the cutoff operator we have defined

already Eq. (16). The coherence proof has the type xs ≻ v ≻ 𝑤 ≡ xs ≻ 𝑤 (given that v ⩾ 𝑤 ), but

we will elide these proofs from now on in the text except where relevant (they are present in our

formalisation).

Crucially, addressing the problems raised in Section 5.2, Neighbours is a monad. We have already

seen 𝜂; join (𝜇) is more difficult. To collapse two layers of Neighbours to a weight𝑤 , we restrict the

outer layer by𝑤 , yieldingWeighted (Neighbours 𝐴); then we use the monadic bind on this outer

Weighted, supplying the continuation that restricts the inner layer by 𝑤 . Finally, we restrict the

resulting set by𝑤 once again.

𝜇 : Neighbours (Neighbours A)→
Neighbours A

𝜇 s ≻ w = s ≻ w ≻ w ≻ w

_≻_ : Weighted (Neighbours A)→
W →Weighted A

s ≻ w = s >>= _≻ w

Though this operation seems intricate, implementing it is largeley a case of applying the cutoff

operator repeatedly until the types line up. Similarly, the coherence condition looks complicated:

∀ v w→ v ⩾ w→ s ≻ v ≻ v ≻ v ≻ w ≡ s ≻ w ≻ w ≻ w

But its proof requires only a little ingenuity, and some tedious applications of the monad laws and

semigroup action laws.

5.4 Coinduction on Indices
The final piece of the puzzle to make Neighbours a usable data structure for graphs is to implement

coinduction using it. This amounts to showing that Neighbours is a cim.

The ideal, Neighbours
s
, is a weighted set where every member has weight at least equal to some

minimum amount 𝑠 . Defining such a type head-on, in the obvious way, turns out to be quite difficult.

Consider the set *2 ⊲ x, 5 ⊲ y+: is this a valid member of Neighbours
3
? What if 𝑥 ≡ 𝑦? (recall that

p ⊲ x :: q ⊲ x :: xs ≡ p ⊓ q ⊲ x :: xs) Is it possible to answer this question without decidable equality

on the entries?

The solution is to represent Neighbours
s
implicitly. First, define the operator ⋊𝑛 , which behaves

like ⋊ Eq.(5), but defined on Neighbours rather thanWeighted.𝑤 ⋊𝑛 𝑥 adds𝑤 to every entry in 𝑥 .

_⋊𝑛_ :W → Neighbours A→ Neighbours A

(w ⋊𝑛 s) ≻ v with w ⩽? v

... | yes (v ·-w , _) = w ⋊ s ≻ v ·-w

... | no _ = *+

Then, a Neighbours set with every entry heavier than𝑤 must be equal to some lighter set with𝑤

added to it, giving the following ideal:

Heavier : W → Neighbours A→ Type

Heavier w x = ∃ lighter × x ≡ w ⋊𝑛 lighter

Neighbours
s
A =

𝛴 [ x : Neighbours A ] × Heavier s x

However, this ideal is in fact isomorphic to Neighbours. Instead of representing the ideal as the

whole sigma, we will represent it as just the lighter weighted set.
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Instead of storing a collection xs and a proof that all of the weights in xs are greater than some

weight s, we will store a collection where the weights are the differences between the actual weights

and the minimum. For example, the collection *3 ⊲ x, 5 ⊲ y+ with minimum 2 is represented by the

actual value *1 ⊲ x, 3 ⊲ y+. This ideal then implements 𝜎 as follows:

𝜎 : Neighbours
s
A→ Neighbours A

𝜎 x = s ⋊𝑛 x

𝜎 (*1⊲x, 3⊲y+ : Neighbours
2
) = *3⊲x, 5⊲y+

To show that this constructed ideal makes Neighbours a cim, we need to establish a solution

function. Concretely, this is a function, given some 𝑠 :𝑊 and 𝑠 . 𝜖 :

solve : (X → Neighbours
s
(X ⊎ A) ⊎ A)→ X → Neighbours A

And further we must show that is an actual solution. Formally:

∀ x → solve ei x ≡ (𝜇 ◦ mapn (solve ei ▽ 𝜂) ◦ (𝜎 ▽ 𝜂 ◦ inr) ◦ ei) x

The proof of this lemma is in our formalisation.

Note that when this formulation is used to implement, for instance, ∗, we call ∗ on the ideal of

the graph, not the graph itself.

Summary. In this section, we have tried to construct a quotiented form of the coinductive data

structures presented in the previous section. We have been partially successful: we have seen the

Bush type, which does faithfully represent a coinductive search space, and indeed could be used to

efficiently implement search algorithms. However, this type is only a monad when countable choice

holds. We then looked at the Neighbours type, which gives an inductive interface to coinductive

algorithms. This type had a monad instance, and was able to perform the search algorithms, and

supported coinduction through the cim framework.

6 Case Studies
Having presented the theory for coinductive graphs, we will now look at some case studies of using

our approach to graphs to implement some standard graph algorithms. In this section we will use

some Haskell to illustrate how our general approach can be adapted to non-total languages while

still preserving some of the valuable algebraic structure from our Agda library.

6.1 Topological Sort
For our first algorithm, we will look at topological sort. The Haskell representation of graphs we

will use is the following:

type GraphOf a = a→ [a]

This is a representation of unweighted graphs, where neighbours are represented with a list. We

are going to implement topological sort, so weights are unnecessary. Since lists preserve the order

of their contents, to convert to this form from the Agda representation in Eq.(4) we would need a

total order on the vertices. Such an order would always be required to implement topological sort,

to break ties in the sorting algorithm, so no generality has been lost.

The implementation of topological sort is simple, but subtle. Here we provide both the Haskell

and Agda versions:
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topoSort :: ∀a.Ord a⇒ GraphOf a

→ [a] → [a]
topoSort g = fst ◦ sortF ( [ ], ∅)
where
sortF :: ( [a], Set a) → [a] →

([a], Set a)
sortF = foldr sortT

sortT :: a→ ([a], Set a)
→ ([a], Set a)

sortT v (sorted, seen) =
if v ∈ seen

then (sorted, seen)
else first (v:)

(sortF (sorted, {v} ∪ seen) (g v))

topo-sort : GraphOf A

→ List A→ List A

topo-sort g = fst ◦ sort-f ([] , ∅) ◦ trace g
where mutual
sort-f : List A × K A→ Forest A→

List A × K A

sort-f ac [] = ac

sort-f ac (n :: ns) = sort-t n (sort-f ac ns)

sort-t : Tree A→ List A × K A

→ List A × K A

sort-t (v & cs) (sorted , seen) =

if does (v ∈? seen)
then (sorted , seen)

else map1 (v ::_)

(sort-f (sorted , v :: seen) cs)

First, let’s explain the type signature. Since our representation doesn’t attach a collection of

vertices to every graph that collection has to be provided separately. Consequently, the type of

topoSort takes a graph and a list of vertices to be sorted. Rather than being a downside, however,

we think this restriction actually improves the clarity of the types: this type for topoSort shows that

the algorithm transforms a graph into a sorting function on lists.

The algorithm itself proceeds by folding right over the supplied list (sortF ), accumulating (from

the right) a set of already-seen vertices. For every new vertex v encountered, if it is not in the set of

already-seen vertices, it is consed to the output, and then the sorting function is recursively called

on its neighbours (g v).

Notice that the recursion pattern here is quite complex: output is built from the left, with the

leftmost vertex in the input appearing first in the output list. However, the crossing-off of already-

seen vertices is done from the right. Furthermore, the recursive call takes as an argument the

updated seen set, but its output is placed after the vertex inserted into that set.

To implement this in Agda we have to deal with this complex termination issue, while preserving

the structure of the algorithm. As is clear above, both algorithms work quite similarly: one notable

difference is that the Agda implementation cannot use a higher-order function like foldr because

that would obscure the structural recursion from the termination checker. Another difference is

that the Agda version uses trace; this converts a graph to a finite tree, so that we can use the tree

to bound termination. We convert the graph to a finite tree using Noetherian finiteness [Firsov

et al. 2016], here implemented as an inductive data type:

data NoethAcc (seen : K A) : Type a where
nacc : (∀ x → x ∈ Dom→ x ∉ seen→ NoethAcc (x :: seen))→ NoethAcc seen

This is actually a special case of the Acc data type we have seen already.

This case study demonstrates that our neighbours-based graph representation, though simple,

can still be used to implement traditional algorithms, even non-search algorithms.
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6.2 Dijkstra
Many of the standard graph algorithms can be easily expressed as instances of transitive closure.

We saw in the introduction (Section 1) that Hamiltonian paths were one such instance; here we

will sketch how Dijkstra’s algorithm can be expressed in the same way.

From a high level, the steps involved in these algorithms are quite similar: like with Hamiltonian

paths, we first produce the transitive closure of all paths through the graph, filtering out cycles,

using pathed and ∗. This produces a graph of all the loop-free paths through the graph.

Where the Hamiltonian paths were given by restricting the output to only paths which covered

the entire graph, we implement Dijkstra by restricting the paths to those with a specified end-point.

dijkstra : Vert → GraphOf Vert → Neighbours (List
+
Vert)

dijkstra s g = ((pathed g >=> filtering uniq)
∗
) [ s ]

From here, it is not too difficult to extract the shortest path from this Neighbours structure.

To get an efficient implementation, we can turn to the heap structure from Section 4.1. A version

of this algorithm was already presented in [Kidney and Wu 2021]. Here, the pairing heap will allow

us to efficiently extract the shortest paths in question. Note that this requires a slightly different

instantiation of graphs, one that does not have the quotiented structure.

7 Related Work
7.1 Comparison to Other Haskell Approaches
While the focus of this paper is on the formalisation and theory of graph algorithms, we think

that our algebraic treatment of graphs (Section 3) could have a lot of practical use for the Haskell

programmer. As such, in this subsection we will briefly compare our approach to other major

Haskell graph treatments. For a more in-depth study of the algorithmic aspects of our approach in

Haskell, we direct the interested reader to our earlier work [Kidney and Wu 2021].

As a running example for this subsection, we will translate Eq. (7) to Haskell on unweighted

graphs, giving depth-first search.

dfs :: GraphOf a→ GraphOf a

dfs g = 1 ⊕ (g >=> dfs g)
Of course, this implementation and representation does not grapple with quotients or coinduction,

but since Haskell doesn’t support quotients and does not enforce productivity this is the most

faithful translation available to us.

Algebraic Graphs with Class. Mokhov [2017] is perhaps the paper closest in spirit to ours: there,

graphs are described algebraically, with the Graph class. Mokhov’s approach differs from ours

primarily in the treatment of vertices: their representation of graphs is a data structure which

contains a concrete collection of vertices. Our representation represents vertices as a type: while

more general, it does preclude us from writing a generic function that traverses all the vertices of a

particular graph. Furthermore, the titular algebra of graphs is a single semiring-like algebra that

manipulates both edges and vertices, whereas we have two separate algebras (the edge (Section 3.1)

and vertex semiring Section 3.5). For example, their overlay operation constructs a graph by taking

the union of the edges and vertices of its operands, whereas our overlay (⊞, Section 3.1) takes the

union of the edges of two graphs who have the same vertices.

The primary advantage of our work over Mokhov [2017] is that we can handle algorithms like

depth-first search directly. Our definition of depth-first search is O(𝑛) already, whereas the to
implement depth-first search inMokhov [2017] they have to convert to another graph representation

first. Mokhov [2017] is focused on graph construction rather than search algorithms, so this is
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no great surprise; hopefully our work can be seen as complementary, building on the algebraic

approach while preserving algorithmic efficiency.

Functional Graph Library. The FGL library and paper [Erwig 2001, 2008] is perhaps the best-

known functional approach to graphs: the approach presented there is in a sense the inverse of the

one presented in this paper. There, graphs are given a representation as an inductive data type, like

lists: algorithms are then expressed as inductive recursive functions over this type. There are clearly

many advantages to using an inductive type: these types are well-supported and well-understood,

and algorithms over them are clear and simple to understand. One particularly notable advantage

of FGL over our approach is the automation of the removal of “already-seen vertices” in depth-first

search implementations. Here is their implementation of depth-first search:

dfs :: [Node] → Graph a b→ Node

dfs [ ] g = [ ]
dfs (v : vs) (c &v

g) = v : dfs (suc c ++ vs) g
dfs (v : vs) g = dfs vs g

The expression dfs vs g takes a stack of vertices vs, and a graph g, and searches the stack of

vertices through the graph in depth-first order. The second clause in the function uses the special

constructor &
v
, which matches the node for the vertex v. The remaining bound graph, g, has that

vertex v removed.

We direct the reader to Kidney and Wu [2021] to see our approach to avoiding already-seen

vertices in Haskell (we use monad transformers), however we feel that the more important difference

between our approach and FGL is that we preserve the algebraic treatment of graphs even when

implementing algorithms. As well as this, our graph type has a more solid formal grounding (in

terms of quotients and formalisation), but that is not so useful to a Haskell programmer. We think

the main advantage of our approach is that graphs and algorithms are presented algebraically:

like Mokhov [2017], we present an algebra of graphs, which can be used to construct and define

graphs; but we go further and extend this same algebra to define graph algorithms.

Gibbons [1995] also treats graphs as an inductive type using initial algebras, and explores various

graph algorithms as catamorphisms. However, that work is limited to acyclic graphs.

Structuring Depth-First Search Algorithms in Haskell. King and Launchbury [1995] provides

a number of example implementations of graph algorithms in Haskell, using depth-first search as

the central reusable algorithm. The containers library [Feuer 2022] bases its graph module on the

algorithms in this paper. Our approach is similar to King and Launchbury [1995] in that we also

use depth-first search (or, more specifically, transitive closure), as a core, reusable algorithm. Our

approach differs in our graph representation. King and Launchbury’s representation is a simple

array-backed adjacency list:

type Graph’ = Array Int [ Int]

However, while our representations differ, it is in fact possible to use our approach on the above

representation without paying anything for the conversion. The conversion function is simply

indexing:

convert :: Graph’→ GraphOf Int

convert = (!)

As such, functions like dfs above work as-is.
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The focus of King and Launchbury [1995] is quite different from ours, being more concerned

with the efficiency of implementation of certain algorithms, but we would like to implement the

algorithms there on our framework in future work.

7.2 Algebraic Graphs
Another algebraic approach to graphs is given by Master [2021, 2022]. These papers generalise

some of the constructions presented here, although they also deal with shortest path problems.

The idea of treating graph algorithms as semiring-based problems can be traced back to Backhouse

and Carré [1975]; Conway [1971]; although those approaches focus on matrices.

Kidney andWu [2021] contains many constructions that are built upon in this paper. In particular,

monuses for weight, the Weighted set, and a version of the Forest type (as a pairing heap) all have

versions present in that paper (albeit slightly different versions). However, that paper does not deal

with coinduction, or the problem of quotienting coinductive structures.

The edge and vertex semiring in this paper are present (in a slightly different form) in the Arrow

library [Hughes 2000; Paterson 2003].

The papers Liell-Cock and Schrijvers [2024]; Mokhov [2022] expand on the algebraic graph

treatment in Mokhov [2017]. The spirit of these papers is very similar to this work, especially in

that both approaches hold algebraic reasoning in high regard. However, our choice to represent

vertices as a type is a major design difference with knock-on effects. As such, while we would like

to incorporate the sophisticated algebraic structure developed in these papers into our work it is

not clear how to do so at the moment.

7.3 Agda and Coinduction
We used Cubical Agda to formalise our work [Vezzosi et al. 2021] because of its support for quotients

which are used in our representation of graphs, and facilities for functional programming. In the

future, perhaps Liquid Haskell [Vazou et al. 2014] or Quotient Haskell [Hewer and Hutton 2024]

could be viable settings for similar work.

Picard and Matthes [2011] also deals with the problem of formalising graphs, and especially

focuses on formalising coinductive graphs. The type of graphs given in that paper is equivalent to

the Heap type: they do not deal with quotients to the same extent as this paper.

There are a few facilities for coinduction in Agda [Abel and Pientka 16ed]. In HoTT, coinduction

is arguably better supported than in MLTT [Ahrens et al. 2015]. It is difficult, though tractable,

to combine quotients with coinductive types [Chapman et al. 2019], and Cubical Agda has made

things a little easier [Joram and Veltri 2023; Veltri and Vezzosi 2023].

The coinductive resumption monad, and associated machinery of cims [Piróg and Gibbons 2014],

underpins much of the work on coinduction in this paper.

8 Conclusion
We do not think that the GraphOf type should be the only representation for writing graph

algorithms; many of the other representations have significant advantages, depending on the

situation. However, we do think that it is a good default that has been largely overlooked: Even

its unquotiented, unweighted counterpart supports the semirings described in this paper, and

enjoys many of the same properties as the fancier version. Most importantly, though, we hope that

this paper motivates programmers to get out of their inductive comfort zone when the situation

demands it: don’t avoid coinduction, embrace it! Be lazy!
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