Automatically and Efficiently Illustrating
Polynomial Equalities in Agda

Donnacha Oisin Kidney

Supervisor: Professor Gregory Provan

Final-Year Project—BSc in Computer Science

Department of Computer Science
University College Cork

April 8, 2019

Abstract

We present a new library which automates the construction of
equivalence proofs between polynomials over commutative rings and
semirings in the programming language Agda [20]. It is significantly
faster than Agda’s existing solver. We use reflection to provide a sim-
ple interface to the solver, and demonstrate how to use the constructed
proofs to provide step-by-step solutions.

1 Declaration of Originality

In signing this declaration, you are conforming, in writing, that the submitted
work is entirely your own original work, except where clearly attributed other-
wise, and that it has not been submitted partly or wholly for any other educational
award.

I hereby declare that:

« this is all my own work, unless clearly indicated otherwise, with full and
proper accreditation;

« with respect to my own work: none of it has been submitted at any ed-
ucational institution contributing in any way to an educational award,;

« with respect to another’s work: all text, diagrams, code, or ideas, whether
verbatim, paraphrased or otherwise modified or adapted, have been duly at-
tributed to the source in a scholarly manner, whether from books, papers,
lecture notes or any other student’s work, whether published or unpub-
lished, electronically or in print.

Signed:
Date:

Contents

1

2

Declaration of Originality

Introduction

2.1 Background,
2.2 Our Contributions
23 Scope

Overview of the Proof Technique

The Interface

41 Implementation
4.2 Maintaining Invariants
Performance
51 Normalisation
5.1.1 Horner Normal Form.
5.1.2 Sparse Encodings
5.1.3 HangingIndices
5.2 Unification
5.2.1 Avoid Progress at all Costs
5.2.2 Avoid Identities
53 Benchmarks
Verification

Pedagogical Solutions
Related Work

Conclusion

11

12
13
16

17
17
17
18
19
21
21
22
24

25

25

27

28

2 Introduction

2.1 Background

The Foundational Crisis In the early 20th century, the foundations of mathe-
matics began to crumble. The first crack was Russell’s paradox, discovered in 1901.
Similar paradoxes soon followed: each represented core errors in the foundational
theories that had underpinned all of mathematics up until that point.

The work of papering over these cracks began in earnest: Russell himself
(along with Whitehead) published the Principia Mathematica (PM) [26], a formali-
sation of contemporary mathematics based on a theory that accounted for the dis-
covered paradoxes. The task proved to be far more difficult than was anticipated:
the PM was infamously verbose (350 pages of preparation precede the proof that
1 +1 = 2), and both men eventually gave up before reaching their goal of a full
formalisation.

These repeated attempts and failures to shore up the foundations of mathe-
matics became known as the “Foundational Crisis”. There were three competing
schools of thought on how to address the crisis: Russell and Whitehead belonged
to the logicism camp, although this came to be overshadowed by the other two
philosophies. David Hilbert championed the “formalists”, the leading school of
thought at the time. These mathematicians envisioned a solution to the crisis in
the form of a finite set of axioms, satisfying a set of requirements (here simplified):

Completeness Any true statement can be derived from the axioms.
Consistency No untrue statement can be derived from the axioms.
Decidability Any statement can be decided as true or false using an algorithm.

These requirements became known as Hilbert’s program.

While intended to be a scaffolding on which to rebuild, these requirements
acted more as targets for later attacks. Firstly, in 1931, Godel published his incom-
pleteness theorems [10], which proved that the first two requirements (complete-
ness and consistency) were impossible to achieve. And finally, in 1936, Alonzo
Church and Alan Turing independently showed that the Entscheidungsproblem
was unsolvable [5, 6], showing that the third requirement was also impossible to
satisfy.

Intuitionism Among the rubble stood intuitionism: the third school of thought,
once maligned, now was more attractive in light of the failure of Hilbert’s program.
Formalists and intuitionists had deep philosophical disagreements: the formalist

held that mathematics was the pursuit of external truth. Hilbert, in particular,
insisted that the axioms and rules of a mathematical formalism were not arbitrary:

We are not speaking here of arbitrariness in any sense. Mathematics
is not like a game whose tasks are determined by arbitrarily stipulated
rules. Rather, it is a conceptual system possessing internal necessity
that can only be so and by no means otherwise. (David Hilbert [12])

Intuitionists, on the other hand, believed that mathematics was a pure construct
of the human mind, and had little or nothing to do with objective reality. Its main
proponent was L. E. J. Brouwer, who became engaged in a bitter dispute with
Hilbert, eventually culminating in Brouwer’s removal from the Mathematische
Annalen, on the basis of Hilbert’s claim that his theories represented a “danger to
mathematics” [23].

In terms of nuts-and-bolts, the defining feature separating intuitionism from
classical logic is the absence of the law of the excluded middle, or “choice”:

VP.Pv -P (1)

This axiom has a deep relation with constructiveness and computability. Intuition-
ism is a constructive theory: to say that something is true is to say that we have
a proof of it. Allowing this axiom, then, would imply that once we could state a
theorem intuitionistically, we would be able to pluck—either from thin air or from
an algorithm—a proof of its truth or falsehood. But of course, via the Entschei-
dungsproblem, we know that this is impossible.

Intuitionistic Type Theory and Agda Intuitionism has had many incarna-
tions since Brouwer (it gained widespread popularity after Bishop), but the partic-
ular version of interest to us comes from a strange source: the type systems of pro-
gramming languages. In formal terms, we are talking about the “Curry-Howard
isomorphism” (Fig. 1): a way to bridge the world of programming languages and
formalised mathematics.

This brings us, at long last, to Agda,
the subject of this work. Agda is a pro-
gramming language and intuitionistic
theory based on Per Martin-Lof’s in-
tuitionistic type theory [15]. Its syn- Program <——=> Proof
tax and evaluation strategy is similar
to Haskell, but as a formalism it can Figure 1: The Curry-Howard Isomor-
be used to prove mathematical state- phism
ments.

Type <= Proposition

lemma:Vxy—->x+y " 1+382+1+y+x

lemma x y = begin
x+y*1+3 ~(refl (+-cong) *-identity" y (+-cong) refl {3})

x+y+3 »(+-commxy(+-cong) refl)

y+x+3 ~(+-comm (y+x)3)

3+ (y+x) =~(sym (+-assoc 3 yx))

2+1T+y+xm lemma = solve NatRing
(a) A Tedious Proof (b) Our Solver

Figure 2: Comparison Between A Manual Proof and The Automated Solver

2.2 Our Contributions

It is over a hundred years since the publication Principia Mathematica, and we
are still a long way away from formalising all of mathematics. There is a popular
website which tracks the progress of this formalisation against the “100 greatest
theorems” [27]: at time of writing, the number stands at 93.

There are many reasons for why we haven’t managed to formalise all 100 yet:
chief among them is that, while we have come far from the days of the PM, proofs
are still verbose and tedious.

This work intends to alleviate some of the tedium of constructing a particular
kind of proof: identities over commutative rings. We write a verified and proven
library for automation in Agda, to automate the construction of proofs like the
one in Fig. 2a, making them as simple as Fig. 2b.

The main contributions of our library are as follows:

Ease of Use Proofs like the one in Fig. 2a are long, difficult to write, and uninter-
esting. Our solver, in contrast, is extremely simple to use: the single line in
Fig. 2b solves the lemma.

This interface (section 4) is implemented using a lightweight reflection sys-
tem (section 4.1), which does not require the user to write any reflection
code, even if they use the solver with their own custom type.

Performance Our solver is significantly faster than Agda’s current ring solver,
cutting type-checking time down from minutes to seconds in several use
cases (section 5.3).

As described in [11], we use a sparse internal representation of polynomials
(section 5.1.2). However, because of differences between Agda and Coq’s
type checker, we found that this optimisation—on its own—did not deliver
a significant speedup, and actually damaged performance in a number of
cases. Achieving the performance we did required an entirely separate kind
of optimisation, described in section 5.2.

Pedagogical Solutions Computer algebra systems (CASs) outside the rigorous
world of dependently-typed languages do far more than just check proofs for
mistakes: they have a wealth of other features which can help with learning
mathematics as well as verifying it.

We hope that similar systems developed in Agda can do the same: as a
demonstration, we implement “step-by-step solutions”, one of the most pop-
ular features of modern CASs. Far from being ill-suited to Agda, we show
that the constructive nature of our proofs allows for a natural implementa-
tion (section 7).

2.3 Scope

In this section, we will explain the intended uses and necessary limitations of the
solver.

Equivalences First, an inflexibility: the solver deals very specifically with the
domain of equivalence proofs, like the one in Fig. 2. While it may be of use
in other settings (finding roots, etc.), that is not explored here.

Setoids On the other hand, we are very flexible about what kind of “equivalence”
we prove. In fact, the solver will work with any equivalence relation, as long
as it comes with proofs of the relevant ring axioms. This is useful for all of
the usual things (approximating quotients and so on), but it also provides
the basis for our “step-by-step solutions” implementation in section 7.

Almost Rings As in [11, section 5], we use a peculiar algebraic structure which
lies somewhere between a semiring and a ring. These “almost-rings” have
all of the usual laws of a commutative ring, but instead of demanding ad-
ditive inverses, they require the comparatively permissive “pseudo-inverse”
operation, which obeys the following equations:

—(zry)=-x*y ()
~(z+y)=-z+-y (3)

This allows the solver to work on types which don’t have an additive inverse
(like N): such types just supply the identity function instead of negation, and
the two laws above are satisfied.

A potential worry is that because we don’t require x + —x = 0 axiomatically,
it won’t be provable in our system. Happily, this is not the case: as long as
1+ -1 reduces to 0 in the coefficient set, the solver will verify the identity.

Weak Decidability A core optimisation in our solver (section 5.1.2) relies on the
ability to test arbitrary coefficients for zero. Instead of requiring decidable
equality (which would greatly diminish the number of types the solver can
work with), we instead ask for weakly decidable equivalence with zero:

is-zero : YV x - Maybe (0# ~ x)

Just as in Agda’s current solver, this allows users to avail of the optimisation
if their type supports it, or skip it (is-zero = const nothing) if not.

Correctness The nature of the solver means it is intrinsically sound (i.e. it can-
not prove an equivalence unless there is one): since all it does is rearrange
and join together the ring axioms, it cannot prove anything that does not
derive from them. We have not, however, proven completeness (that every
equivalence will be found by our solver).

In the internal representation of the solver, we prove several data structure
invariants (like sparsity) intrinsically.

The reflection-based interface is unproven, but since the output is type checked
our claim of soundness still stands: a bug in our reflection code can only
cause the solver to miss a solution, never to prove something it shouldn’t.

10

3 Overview of the Proof Technique

we(ae (e (2o) e (e (o (2o €))) —

[_] [_4]

(0oe)o(l®2) a3 correct correct Oel)e (23)
oo L [] K
T ((we) e we) ez (wed)e(yed)e—
T quoteTerm quoteTerm -

Figure 3: The Reflexive Proof Process

Before diving into to specifics,

we'll first give a quick overview data Expr {¢} (A: Set £) (n: N) : Set ¢ where

of how the solver works, so K :A-ExprAn

it’s clear how the bits of imple- I :Finn—ExprAn

mentation described later in _®_:ExprAn— Expr An— ExprAn

the paper fit together. _®_:Expr An— Expr An— ExprAn
The technique we use for _®_:ExprAn—N-—ExprAn

automating equivalence proofs ©_ :ExprAn—ExprAn

comes from [1]: the general
idea is that we prove two ex-
pressions equivalent by prov-
ing that they’re both equiva-
lent to the same canonical form. The diagram in Fig. 3 demonstrates this for the
identity from Fig. 2: on the bottom of the diagram you can see the left and right
hand side of the identity we want to prove, and on the top we can see their normal
forms. The actual proof the solver provides is represented by the ~ path.

To prove that each expression is equivalent to the canonical form we first rep-
resent the expressions using the type in Fig. 4. This type represents the Abstract
Syntax Tree (AST) for expressions in the almost-ring algebra: it has constructors
corresponding to each ring operation (r+y =z ® y, t *y = x ® y), and it can refer
to variables via their de Bruijn index (so = becomes | 0).

There are two ways to evaluate the AST: the [_] function converts the AST to
the expression we want to prove, whereas [_|} | converts it to a the canonical form.
The implementation of the |_|/] function is described in section 5.1.

Figure 4: A Type for Ring Expressions

11

Equivalence of the canonical forms is proven via correct: some of the details
of this are explained in section 6.

Finally, instead of asking the user to construct the AST themselves, we use
reflection to automate it. This is described in the following section.

4 The Interface

We felt an easy-to-use inter-

face was one of the most lemma: Vxy—>x+y T+3~82+T+y+x
important components of the lemma x y -

library as a whole. Since begin

we wanted to minimise the x+y"1+3 ~(+-comm (x+y*1)3)

amount a user would have to 3+ (x+y~*1)~(solveOver (x:: y:: []) Nat.ring)
learn to use the solver, we 3+y+x ()

kept the surface area of the li- 2+1+y+x

brary quite small: aside from
the almost-ring type, the rest
of the interface consists of
just two macros (solve and
solveOver). We tried to make their usage as obvious as possible: just stick one of
them (with the required arguments) in the place you need a proof, and the solver
will do the rest for you.

solve is demonstrated in Fig. 2b. It takes a single argument: an implementation
of the algebra. solveOver is designed to be used in conjunction with manual proofs,
so that a programmer can automate a “boring” section of a larger more complex
proof (Fig. 6). As well as the algebra implementation, this macro takes a list of free
variables to use to compute the solution.

Because this interface is quite small, it’s worth pointing out what’s missing, or
rather, what we don’t require from the user:

Figure 6: The solveOver Macro

« We don’t ask the user to construct the Expr AST which represents their proof

lemma:Vxy—->x+y* 1+3=2+1+y+x

lemma = +-*-Solver.solve 2
ANxy—x:+y:"conl:+con3:=con2:+conl:+ y:+x)
refl

Figure 5: The Old Solver

12

obligation. Compare this to Fig. 5: we had to write the type of the proof twice
(once in the signature and again in the AST), and we had to learn the syntax
for the solver’s AST.

As well as being more verbose, this approach is less composable: every
change to the proof type has to be accompanied by a corresponding change
in the call to the solver. In contrast, the call to solveOver above effectively
amounts to a demand for the compiler to “figure it out!” Any change to the
expressions on either side will result in an automatic change to the proof
constructed.

« We don’t ask the user to write any kind of “reflection logic” for their type.
In other words, we don’t require a function which (for instance) recognises
and parses the user’s type in the reflected AST, or a function which does the
opposite, converting a concrete value into the AST that (when unquoted)
would produce an expression equivalent to the quoted value.

This kind of logic is complex, and very difficult to get right. While some
libraries can assist with the task [19,25] it is still not fully automatic.

4.1 Implementation

Agda has powerful metaprogramming facilities, which allow programs to manip-
ulate their own code. Here, we’ll use reflection to implement the interface to our
solver.

Agda’s reflection API is mostly encapsulated by the following three types:

Term The representation of Agda’s AST, retrievable via quoteTerm.
Name The representation of identifiers, retrievable via quote.

TC The type-checker monad, which includes scoping and environment informa-
tion, can raise type errors, unify variables, or provide fresh names. Compu-
tations in the TC monad can be run with unquote.

While quote, quoteTerm, and unquote provide all the functionality we need,
they’re somewhat low-level and noisy (syntactically speaking). Agda also provides
amechanism (which it calls macros) to package metaprogramming code so it looks
like a normal function call (as in solve).

Reflection is obviously a powerful tool, but it has a reputation for being unsafe
and error-prone. Agda’s reflection system does not break type safety, but we are
able to construct Terms which are ill-typed, which often result in confusing error-
messages on the user’s end. Unfortunately, constructing ill-typed terms is quite

13

easy to do: the Term type itself does not contain a whole lot of type information,
and it’s quite fragile and sensitive to context. Variables, for instance, are referred
to by their de Bruijn indices, meaning that the same Term can break if it’s simply
moved under a lambda.

Building a robust interface using reflection required a great deal of care. To
demonstrate some of the techniques we used, we’ll look at two functions from the
core of the interface. First, toExpr:

toExpr : Term — Term

toExpr (def (quote AlmostCommutativeRing._+_) xs) = getBinOp (quote _®_) xs
toExpr (def (quote AlmostCommutativeRing._*) xs) = getBinOp (quote _®_) xs
toExpr (def (quote AlmostCommutativeRing._"_) xs) = getExp xs

toExpr (def (quote AlmostCommutativeRing.-_) xs) = getUnOp (quote ©_) xs

toExpr v@(var x _) with x N.<? numVars
. |yesp=wv

... | no =p = constExpr v

toExpr t = constExpr ¢

This function is called on the Term representing one side of the target equivalence.
It converts it to the corresponding Expr. In other words, it performs the following
transformation:

(wee)e(zoey))ez>((0de)d(ld2) @3

When it encounters one of the ring operators, it calls the corresponding helper
function (getBinOp, getExp, or getUnOp) which finds the important subterms
from the operator’s argument list.

If it does not manage to match an operator or a variable, it assumes that what
it has must be a constant, and wraps it up in the K constructor. This is the key
trick which allows us to avoid ever asking the user to quote their own type. While
it may seem unsafe at first glance, we actually found it to be more robust (for our
use case) than the alternative:

Principle 1 (Don’t reimplement the typechecker) While it may seem good and
fastidious to rigorously check the structure and types of arguments given to a macro,
we found better results by avoiding validity-checking in metaprogramming code. In-
stead, we preferred to proceed as if there were no errors (if possible), but arrange the
output so that the user would still see a type error where the input was incorrect.

14

Taking this case as an example, if the user indeed manages to supply something
other than the correct type, Agda will catch the error, as an incorrect argument to K.

If; on the other hand, we had asked the user to quote their own type, we would have
trouble handling (for instance) closed applications of functions, references to names
outside the lambda, etc. This approach, on the other hand, has no such difficulty.

Next, we’ll look at one of the helper functions: getExp, which deals with expo-
nentiation.

getExp : List (Arg Term) — Term

getExp (x (::) y (::) []) = quote _®_ (con) 3 ---]::f toExpr x (::) y (::) []
getExp (x:: xs) = getExp xs

getExp _ = unknown

It extracts the last two arguments to the exponentiation operator, and wraps
them up with the ®. Before the two visible arguments to the exponentiation opera-
tor, we first apply 3 ---]::{. This applies three hidden arguments as “unknown”, i.e.
asks Agda to infer them. We could guess them ourselves: the first is the universe
level of the carrier type, the second is the carrier type, and the third is the num-
ber of variables in the expression. We decided against it, though, instead being
intentionally unspecific:

Principle 2 (Supply the minimal amount of information) There were several
instances where, in constructing a term, we were tempted to supply explicitly some
argument that Agda usually infers. Universe levels were a common example. We
found this approach to be error-prone, however: as it turns out, the compiler is bet-
ter a guessing implicits than we are. Instead, we preferred to leverage the compiler,
relying on inference over direct metaprogramming as much as possible.

The final point to make is that the entire interface implementation is itself
quite small (fewer than 100 lines). This isn’t because our code was terse: rather,
we intentionally minimised the amount of metaprogramming we did.

Principle 3 (Keep Metaprogramming to the Edges) With great power comes poor
error messages, fragility, and a loss of first-class status. Therefore, If something can be
done without reflection, do it, and use reflection as the glue to get from one standard
representation to another.

15

4.2 Maintaining Invariants

One obvious benefit of reflection is a terse interface. However, we feel that another
benefit—resilience to change—is just as important. This section illustrates that
resilience with an example.

Agda allows us to encode program correctness in types, so we can prove prop-
erties we would have otherwise only been able to test. Unfortunately, these kinds
of proofs tend to be very tightly coupled to the implementation of the algorithms
they verify. This can make iteration difficult, where small optimisations or bug
fixes can invalidate proofs for other invariants.

To demonstrate the problem, and how our solver can reduce some of the bur-
den, we’ll look at size-indexed binary trees:

data Tree : N — Set a where
leaf : Tree 0
node:V{nm} - A — Tree n > Tree m - Tree (n+ m + 1)

We’ve deliberately chosen an awkward type here: in contrast to the more com-
mon size-indexed lists, the index (the size) does not match the shape of the data
structure. As a result, almost every function which manipulates the tree in some
way will have to come accompanied by a verbose, complex proof. Take this line,
for instance, which performs a left-rotation on the tree:

rot' (node {a} x xI (node {b} {c} y yr yl)) = node y (node x xI yl) yr
A sensible invariant to encode here is that the function does not change the size
of the tree. Unfortunately, to prove that invariant, we have to prove the following:
l+(1+a+c)+b=1+a+(1+b+c)
Though simple, this is precisely the kind of proof which requires many fussy

applications of the ring axioms. Here, our solver can help:

rot' (node {a} x xI (node {b} {¢} y yr yI)) = node y (node x xI yl) yr
=VY(ab:c:[])

While cutting down on the amount of code we need to write is always a good
thing, the real strength of this method is that it automatically infers the input type.
This makes it resilient to small changes in the code. So, when we notice the bug
in the code above (yl and yr are swapped in the pattern-match), we can simply fix
it, without having to touch any of the proof code.

16

rot' (node {a} x xI (node {b} {c} y yl yr)) = node y (node x xI yl) yr
=VY(a:biic:[])

If we hadn’t used the solver, this fix would have necessitated a totally new
proof. By automating the proof, we allow the compiler to automatically check
what we mean (“does the size of the tree stay the same?”), while we worry about
other details.

5 Performance

Our solver is significantly faster than the current solver: the following sections
will detail how we achieved that speedup. We will start by describing the naive
implementation; in section 5.1.2 we demonstrate how we added the optimisations
from [11]; and in section 5.2 we will describe the Agda-specific optimisations
which account for the bulk of our speedup. Finally, section 5.3 contains some
benchmarks against the current solver.

5.1 Normalisation

Most of code written for the solver is concerned with normalisation: the [_|}]
function in Fig. 3. This converts from the expression AST (Fig. 4) to a canonical
form.

5.1.1 Horner Normal Form

The particular “canonical form” we’ll start with is the same as in Agda’s current
ring solver: Horner normal form. A polynomial (more specifically, a monomial) in
x is represented as a list of coeflicients of increasing powers of x. As an example,
the following polynomial:

3+22% + 42° + 227 (4)

Is represented by this list:
3::0::2::0::0::4::0::2::]

Operations on these polynomials are similar to operations in positional number
systems.

17

@: Poly — Poly — Poly _&®_: Poly — Poly — Poly

[@ ys=ys ®_[]_=1]
(x:ixs)@ []=x::xs _®_(x:xs) =
(x:ixs)B(y::ys)=x+y:ixsEYySs foldr(N\yys—=x"y:imap (_" y) xs&@ ys) []

So to get from Expr to Poly we map each constructor to the relevant polynomial
operation. Then, to get from Poly to an expression in the underlying ring, we use
Horner’s rule: a classic example of the foldr function.

[_]: Poly - Carrier - Carrier
[xs]p=foldr(\ yys—p* ys+ y) 0% xs

5.1.2 Sparse Encodings

Our first avenue for optimisation comes from [11]. Notice that the encoding above
is quite wasteful: it always stores an entry for each coefficient, even if it’s zero. In
practice, we're likely to often find long strings of zeroes (in expressions like z'0),
meaning that our representation will contain long “gaps” between the coefficients
we’re actually interested in (non-zero ones).

To fix the problem we’ll switch to a sparse encoding, by storing a “power index”
with every coefficient. This will represent the size of the gap from the previous
non-zero coefficient. Taking 4 again as an example, we would now represent it as
follows:

(3,0)::(2,)::(4,2)::(2,1)::]

Next, we turn our attention to the task of adding multiple variables. Luckily,
there’s an easy way to do it: nesting. Multivariate polynomials will be represented
as “polynomials of polynomials”, where each level of nesting corresponds to one
variable. It’s perhaps more clearly expressible in types:

Poly : N — Set ¢
Poly zero = Carrier
Poly (suc n) = List (Poly n x N)

18

Inductively speaking, a “polynomial” in 0 variables is simply a constant, whereas a
polynomial in n variables is a list of coefficients, which are themselves polynomials
in n — 1 variables.

Before running off to use this representation, though, we should notice that we
have created another kind of “gap” which we should avoid with a sparse encoding.
For a polynomial with n variables, we will always have n levels of nesting, even
if the polynomial does not actually refer to all n variables. In the extreme case,
representing the constant 6 in a polynomial of 3 variables looks like the following:

(6, 0):: 1), 0) == [1), 0):: [)

The solution is another index: this time an “injection” index. This represents
“how many variables to skip over before you get to the interesting stuff”. In con-
trast to the previous index, though, this one is type-relevant: we can’t just store a
N next to the nested polynomial to represent the gap. Because the polynomial is
indexed by the number of variables it contains, any encoding of the gap will have
provide the proper type information to respect that index.

5.1.3 Hanging Indices

The problem is a common one: we have a piece of code that works efficiently, and
we now want to make it “more typed”, by adding more information to it, without
changing the complexity class.

We found the following strategy to be useful: first, write the untyped version
of the code, forgetting about the desired invariants as much as possible. Then, to
add the extra type information, look for an inductive type which participates in
the algorithm, and see if you can “hang” some new type indices off of it.

In our case, the injection index (distance to the next “interesting” polynomial)
was simply stored as an N, and the information we needed was the number of
variables in the inner polynomial, and the number of variables in the outer. All of
that is stored in the following proof of <:

data_< (m:N): N — Set where
m<m: m<m
<-s :V{nf->m<n—->m<sucn

A value of type n < m mimics the inductive structure of the N we were storing
to represent the distance between n and m. We were able to take this analogy
quite far: in a few functions, for instance, we needed to compare these gaps. By
mimicking the inductive structure of N, we were able to directly translate Ordering
and compare on N:

19

data Ordering : N - N — Set where
less :V mk— Ordering m (suc (m + k))
equal :V m — Ordering mm
greater : V m k - Ordering (suc (m + k)) m

into equivalent functions on <:

data <-Ordering {n: N} : V {i j}
— (i<n:i<n)
— (j<n:j< n)
— Set
where
<t VH{ij-1
- (i<j-1: i < j-1)
— (j<n:suc j-1< n)
— <-Ordering (<-trans (<-s i<j-1) j<n)
Jj<n
<-gt : V{i-1j}
— (i<n:suci-1< n)
= (j<i-1: j < i-1)
— <-Ordering i<n
(<-trans (<-s j<i-1) i<n)
<-eq: V{i}
- (in: i< n)
— <-Ordering i<n
i<n

<-compare : V {ij n}

= (x:i<n)

—(y:j<n)

— <-Ordering x y
<-compare m<m m<m = <-eq m<m
<-compare m<m (<-s y) = <-gt m<m y
<-compare (<-s x) m<m = <-lt x m<m
<-compare (<-s x) (<-s y)

with <-compare x y
| i1 = <t igj-1 (<5)
o | S-gt _j<i-1 = <-gt (<-s x) j<i-1
. | <-eq _ = <-eq (<-s x)

20

5.2 Unification

After applying the previous optimisations, we might expect an immediate speedup
in the solver: unfortunately, this isn’t the case. Without some careful adjustments,
the optimisations in the previous section can actually slow down the solver. In this
section, we’ll try and explain the problem and how we fixed it, and give general
guidelines on how to write Agda code which typechecks quickly.

Up until now, we have focused on the operations performed on the polyno-
mial. Remember, though, the reflexive proof process has several steps: only one of
them containing the operations ([_|}] in Fig. 3). Despite having the most complex
implementation, this isn’t the most expensive step: surprisingly, the innocuous-
looking refl takes the bulk of the time! Typechecking this step involves unifying
the two normalised expressions, a task which is quite expensive, with counterin-
tuitive performance characteristics.

First, the good news. In the general case, unifying two expressions takes time
proportional to the size of those expressions, so our hard-won optimisations do
indeed help us.

Unfortunately, though, the “general case” isn’t really that general: Agda’s uni-
fication algorithm has a very important shortcut which we must make use of if we
want our code to typecheck quickly: syntactic equality.

Before the full unification algorithm, Agda runs a quick check to see if the two
expressions it’s testing for equality are syntactically equal. This can make a big
difference in unification problems like the following:

sum [1..100] £ sum [1..100]

By noticing that these expressions are syntactically equal, we can avoid ac-
tually computing the sum function. Taking advantage of that shortcut is key to
achieving decent performance. With that in mind, there are two main strategies
we’ll use to encourage syntactic equality:

5.2.1 Avoid Progress at all Costs

First, we will consider something which may seem inconsequential: the order of
arguments to the evaluation functions.

[xs]ip=foldr(\ yys—p* ys+y) 0 xs

xs |, p=foldr(\ yys—> y+ ys* p) 0 xs
p VY y+ys p

[_] is the definition we’ve been working with so far. Some readers might find [_|,
more natural, however. The reason is that it’s more productive: in lazy languages,

21

the usual convention is that functions which take multiple arguments should scru-
tinise those arguments from left to right. The * and + functions (on N, at any rate)
follow that convention, meaning that [_], is able to make more progress without
a concrete z. Taking the polynomial 22 + 2 as an example:

[2::0:1:]]ix =() [2:0:1:[]]rx =()
xT(xF(x*0+1)+0)+2=() 2+(0+(1+0"x) " x) *x=()
x*(x*(x"0+1)+0)+2m suc (suc ((x +0) * x)) []

In [_];, we're blocked pretty much straight away, as x is the first thing we try to
scrutinise. In [_],, since all of the constants are kept to the left, they’re scrutinised
first, allowing us to perform much more normalisation before being blocked.

This is exactly what you don’t want! Since both expressions will be coming
out of the same evaluation function, they should have the same structure, mean-
ing that we don’t need the reduction of outer terms that [_], gives us. We only
need to perform normalisation on the coefficients: these are computed during the
manipulations of the polynomial, and so may contain unevaluated expressions. If
we used [_], as our definition, then the type checker will likely hit an inequality
on the first term, and as a result we lose all opportunity for syntactic equality. [_];,
on the other hand, front-loads all of the variables, maintaining syntactic equality
for as long as possible.

As well as that, we don’t have any control of the structure we get from the
ring operators. This means that any reduction, as well as being unnecessary, can
destroy the structural similarity between the two expressions, and as a result their
syntactic equality.

The (counterintuitive) lesson learned is as follows: to speed up unification,
keep things which are likely to be syntactically equal to the left, and don’t structure
your functions to encourage progress. Simply swapping the arguments (as we do
above) resulted in a performance improvement of several orders of magnitude.

5.2.2 Avoid Identities

It’s a good idea to avoid identities (expressions like 0+ or 1 *) in the normalised
expression. This will reduce the size of your expression, which is helpful in gen-
eral, but more importantly it increases the likelihood of finding syntactic equality
in the argument to the identity (x in the examples above).

22

(x*
(x*
(x*
(x*
x* (x*
(™ (x* (x*
((x"x) " (x* (x”
(x*2) 0
+4)) +2)
+2)) +0)
+3 +4)
+0)
(a) Sparse encoding, with identity- +0)
avoiding optimisation +2)
+0)
+3

(b) Dense encoding, without
identity-avoiding optimisation

Figure 7: Comparison of the normal forms of equation 4

Our sparse representation helps significantly in this case by entirely removing
0 from the generated expression. Another place we can make improvements is in
the base cases for recursive functions. Take exponentiation, for example:

":Carrier - N — Carrier
x " zero =1
x"Msuci=x"(x"1i

We can avoid that 1 in the majority of cases by rewriting the function to have an
extra base case:

A A

_+1: Carrier > N — Carrier _* :Carrier - N — Carrier
x"zero +1=x x" zero =1

x"Msuci+l=(x"i+1)"x x"suci=x"

i+1

In the library, we employ this idea extensively, avoiding unnecessary identities
as much as we could. This has a significant effect on the size of the resulting
normal form, but also ensures that normalisation stops exactly where we want it
to, preserving the structure of the expressions as much as is possible. This makes
a significant difference to both size and syntactic similarity as can be seen in Fig. 7.

23

5.3 Benchmarks

T T 30 T T T T
100 |-
1,000 |-
20
50 - 500 |-
10
- 115 i
o — ! !] o L ! ! Sl — \ ! !
d=2 4 6 8 d=0__ 200 400 d=2 4 6 8
Figure 8: Time (in seconds) to prove each expression is equal to its ex-
panded form (n = 5 for each).
-—--new
old | penchmarks performed on Agda version 2.6-0fa9b13, with the Agda standard library

at commit-3bd3334a9552490e396173f96812105a27¢5917b, on a 2016 MacBook Pro,
with a 2.9 GHz Intel Core i7 and 16 GB of RAM.

The main performance benefit of the new solver is that it reduces the size of
the polynomials, both during manipulation and for unification. This reduction is
dramatic, even for small expressions: multiplication, for example, generates poly-
nomials with sizes proportional to the product of the sizes of its arguments.

We expect that this will yield 5- to 10-fold speedups in many common use cases.
Fig. 8a shows time taken to type check a proof that (1 +xo+x3+ 24 +x5)? is equal
to its expanded form. The new representation is clearly faster overall, with a factor
of 7.5 speedup for d = 8. However, the speedup is even more dramatic when the
powers of the terms are mixed: Fig. 8c demonstrates this, with a 30-factor speedup
at d = 8. We feel that this represents a much more common use-case.

These benchmarks cover a broad range of polynomials, with a mix of the three
operations provided (addition, multiplication, and exponentiation). In each, the
new solver exhibits an order of magnitude speedup at higher powers. We have not
been able to find a case where the old solver is significantly faster than the new;
however, the old solver does exhibit a small lead (roughly 2-3 seconds, which nar-
rows to about 1 second without reflection) on very simple expressions, possibly
caused by the overhead of the new solver’s more complex implementation. 1 sec-
ond is quite small in the context of Agda type checking (the standard library, for
instance, takes several minutes to type check), so we feel this slight loss is more
than made up for by the gains. Nonetheless, if a user really wants to use the old
solver, the other components described here are entirely modular, and can work
with any underlying solver which uses the reflexive technique.

24

40

6 Verification

The output of the solver is a constructive proof of equivalence: this is derived from
a generic proof that the operations on the solver are a ring homomorphism from
the carrier type. Put another way, for the solver to work properly, we would need
to prove that addition (and multiplication, and negation, etc.) on Horner normal
forms corresponds with addition on the carrier type.

These proofs are long (about 1000 lines) and complex. Without careful struc-
turing of the proofs, every new optimisation would require a whole new round of
proof code, with very little reuse.

To avoid this problem, we took inspiration from [18], and relied heavily on
abstraction and folds to improve the reuse in proof code. In particular, we defined
many operations as metamorphisms [9]. So, instead of defining (say) negation over
the polynomial type itself, we will define a metamorphism to express negation, and
then call some higher-order function to run that metamorphism over a polynomial.

Meta : N — Set ¢
Meta n = Poly n x Coeff n x - Poly n x Coeff n *

From here, we can define the semantics of

a metamorphism. As an example, Fig. 9 shows poly-mapR
the semantics of poly-map, a simple morphism YV Anf pps
which behaves something like map on lists. = ([f]: Poly n — Poly n)

Now, each operation only has to be proven — (f: Carrier — Carrier)
up to the semantics defined above. Crucially, > (Vxy->x"fy~fx"y)
optimisations like the sparse encoding respect > (Vxy=fx+y)~fx+fy)
these semantics, so we only have to change our > Vy=[[flylps~f(l y]ps)
proofin one place: the definition of poly-mapR. - (va# ~ 0#)

-V xs

— X?[poly-map [f] xs] (p. ps)

7 Pedagogical Solutions ~FS[xs] (p, ps))

One of the core aims of this work is to take
a step towards making Agda a useful tool for
doing mathematics. The rest of this paper has poly-map

described our efforts to compensate for Agda’s

disadvantage in this area: namely, a pedantic

typechecker. This section will attempt to show

the other side of the coin, and demonstrate some of the unique benefits that come
from using a programming language to do your proofs.

Figure 9: The Semantics of

25

Outside of computer scientists and mathematicians, most people’s experience
of computer algebra probably amounts to the step-by-step solutions from Wol-
fram|Alpha [22] or some similar system.

Something so high-level and user-facing hardly seems like it’s in a dependently-
typed language’s wheelhouse; on the other hand, the very nature of a proof in
Agda is that it has computational content: why not make some of that content an
explanation for the equality?

Prior work in this area includes [14]: there, the problem is reformulated refor-
mulates the problem as one of path-finding. The left-hand-side and right-hand-side
of the equation are vertices in a graph, where the edges are single steps to rewrite
an expression to an equivalent form. A* is used to search.

Unfortunately, this approach has to deal with a huge search space: every vertex
will have an edge for almost every one of the ring axioms, and as such a good
heuristic is essential. Furthermore, what this should be is not clear: [14] uses a
measure of the “simplicity” of an expression.

Notice, however, that paths in undirected l+2+y+a
graphs form a perfectly reasonable equivalence re-
lation: transitivity is the concatenation of paths, re- W

flexivity is the empty path, and symmetry is revers- Sryra

ing a path. Equivalence classes, in this analogy, are I

connected components of the graph. THy*1+3 y+3+z
More practically speaking, we implement these \ /

“paths” as lists, where the elements of the list are el- T+y+3

ementary ring axioms. When we want to display a / \

step-by-step solution, we simply print out each ele- 3+rty-r+3+y

ment of the list in turn, interspersed with the states

of the expression (the vertices in the graph). Figure 10: Graph Containing

If we stopped there, however, the solver would Loops
output incredibly verbose “solutions”: far too verbose to be human-readable. In-
stead, we must apply a number of path-compression heuristics to cut down on the
solution length:

1. First, we remove loops from the graph. Fig 10 shows an example solution
without this heuristic applied: it crosses the same point multiple times, cre-
ating useless steps in the output. In contrast to using just A* on its own, the
search space is minimal (with only one outward edge for each vertex).

2. Then, we filter out “uninteresting” steps. These are steps which are obvious
to a human, like associativity, or evaluation of closed terms. When a step
is divided over two sides of an operator, it is deemed “interesting” if either
side is interesting.

26

After applying those heuristics, our solver outputs the explanation in Fig. 11 for
the lemma in Fig. 2
X +vy + 3
={ +-comm(x, y + 3) }
y + 3 + X
={ +-comm(y, 3) }
3 +vy + X

Figure 11: Step-by-Step Output From Our Solver

8 Related Work

In dependently-typed programming languages, the state-of-the-art solver for poly-
nomial equalities (over commutative rings) was originally presented in [11], and is
used in Coq’s ring solver. This work improved on the already existing solver [7]
in both efficiency and flexibility. In both the old and improved solvers, a reflexive
technique is used to automate the construction of the proof obligation (as described
in [1]).

Agda [20] is a dependently-typed programming language based on Martin-
Lof’s Intuitionistic Type Theory [15]. Its standard library [8] currently contains a
ring solver which is similar in flexibility to Coq’s ring, but does not support the
reflection-based interface, and is less efficient to the one presented here.

In [21], an implementation of an automated solver for the dependently-typed
language Idris [2] is described. The solver is implemented with a “correct-by-
construction” approach, in contrast to [11]. The solver is defined over noncommutative
rings, meaning that it is more general (can work with more types) but less power-
ful (meaning it can prove fewer identities). It provides a reflection-based interface,
but internally uses a dense representation.

Reflection and metaprogramming are relatively recent additions to Agda, but
form an important part of the interfaces to automated proof procedures. Reflection
in dependent types in general is explored in [4], and specific to Agda in [24].

Formalisation of mathematics in general is an ongoing project. [27] tracks how
much of “The 100 Greatest Theorems” [13] have so far been formalised (at time
of writing, the number stands at 93). DoCon [17] is a notable Agda library in this
regard: it contains many tools for basic maths, and implementations of several CAS
algorithms. Its implementation is described in [16]. [3] describes the manipulation
of polynomials in both Haskell and Agda.

Finally, the study of pedagogical CASs which provide step-by-step solutions is
explored in [14]. One of the most well-known such system is Wolfram Alpha [28],

27

which has step-by-step solutions [22].

9 Conclusion

We have presented a ring solver for the programming language and proof assistant
Agda. It is faster than the existing solver: common use-cases can expect to see 5-
fold increases in speed, and some pathological cases can see improvements of a
factor of 30 or more. The interface is easy to use: the solver can be accessed with a
single macro call, and requires no knowledge of its inner workings. The solver is
flexible: it works out-of-the-box with any commutative ring or semiring defined
over a setoid, with no special additions required. Finally, we demonstrated this
flexibility by implementing, with no modification to the solver’s code, automatic
generation of step-by-step solutions.

We think the future of formalised mathematics looks bright: as well as helping
keep us honest, we believe computers and proof assistants can make mathematics
easier and more fun. We hope this project gets us closer to that future.

References

[1] Samuel Boutin. Using reflection to build efficient and certified decision proce-
dures. In Martin Abadi and Takayasu Ito, editors, Theoretical Aspects of Com-
puter Software, Lecture Notes in Computer Science, pages 515-529. Springer
Berlin Heidelberg, 1997.

[2] Edwin Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming,
23(05):552-593, September 2013.

[3] Chen-Mou Cheng, Ruey-Lin Hsu, and Shin-Cheng Mu. Functional Pearl:
Folding Polynomials of Polynomials. In Functional and Logic Programming,
Lecture Notes in Computer Science, pages 68—83. Springer, Cham, May 2018.

[4] David Raymond Christiansen. Practical Reflection and Metaprogramming for
Dependent Types. PhD thesis, IT University of Copenhagen, November 2015.

[5] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345-363, 1936.

[6] Alonzo Church. A. M. Turing. On computable numbers, with an application
to the Entscheidungs problcm. Proceedings of the London Mathematical So-

28

(7]

(8]

ciety, 2 s. vol. 42 (1936-1937), pp. 230-265. The Journal of Symbolic Logic,
2(1):42-43, March 1937.

The Coq Development Team. The Coq Proof Assistant Reference Manual, Ver-
sion 7.2. 2002.

Nils Anders Danielsson. The Agda standard library, June 2018.

[9] Jeremy Gibbons. Metamorphisms: Streaming Representation-Changers. Sci-

[19]

ence of Computer Programming, 65(2):108-139, 2007.

Kurt Godel. Uber formal unentscheidbare Sitze der Principia Mathemat-
ica und verwandter Systeme 1. Monatshefte fiir Mathematik und Physik,
38(1):173-198, December 1931.

Benjamin Grégoire and Assia Mahboubi. Proving Equalities in a Commu-
tative Ring Done Right in Coq. In Theorem Proving in Higher Order Logics,
volume 3603 of Lecture Notes in Computer Science, pages 98—113, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

David Hilbert. Natur und mathematisches Erkennen: Vorlesungen, gehalten
1919-1920 in Goéttingen. Birkhauser, 1992.

Nathan W. Kahl. The Hundred Greatest Theorems, 2004.

Dmitrij Lioubartsev. Constructing a Computer Algebra System Capable of Gen-
erating Pedagogical Step-by-Step Solutions. PhD thesis, KTH Royal Institue of
Technology, Stockholm, Sweden, 2016.

Per Martin-Lof. Intuitionistic Type Theory. Padua, June 1980.

Sergei D Meshveliani. Dependent Types for an Adequate Programming of
Algebra. Technical report, Program Systems Institute of Russian Academy of
sciences, Pereslavl-Zalessky, Russia, 2013.

Sergei D. Meshveliani. DoCon-A a Provable Algebraic Domain Constructor,
April 2018.

Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. Algebra of program-
ming in Agda: Dependent types for relational program derivation. journal
of Functional Programming, 19(5):545-579, September 2009.

Ulf Norell. Agda-prelude: Programming library for Agda, August 2018.

29

[20]

[21]

[22]

[23]

[24]

[25]

[26]
(27]

[28]

Ulf Norell and James Chapman. Dependently Typed Programming in Agda.
Technical report, 2008.

Franck Slama and Edwin Brady. Automatically Proving Equivalence by Type-
Safe Reflection. In Herman Geuvers, Matthew England, Osman Hasan, Flo-
rian Rabe, and Olaf Teschke, editors, Intelligent Computer Mathematics, vol-
ume 10383, pages 40-55. Springer International Publishing, Cham, 2017.

The Development Team. Step-by-Step Math, December 2009.

D. van Dalen. The War of the Frogs and the Mice, or the Crisis of the Math-
ematische Annalen. The Mathematical Intelligencer, 12(4):17-31, September
1990.

P.D. van der Walt. Reflection in Agda. Master’s Thesis, Universiteit of Utrecht,
October 2012.

Paul van der Walt and Wouter Swierstra. Engineering Proof by Reflection
in Agda. In Ralf Hinze, editor, Implementation and Application of Functional
Languages, volume 8241, pages 157-173. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

A.N. Whitehead and B. Russell. Principia Mathematica. Vol. I. 1910.
Freek Wiedijk. Formalizing 100 Theorems, October 2018.

Wolfram Research, Inc. Wolfram|Alpha. Wolfram Research, Inc., 2019.

30

