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Abstract

The large-scale structure of executing a computation can
often be thought of as being separated into distinct phases.
But the most natural form in which to specify that computa-
tion may well have a di�erent and con�icting structure. For
example, the computation might consist of gathering data
from some locations, processing it, then distributing the re-
sults back to the same locations; it may be executed in three
phases—gather, process, distribute—but mostly conveniently
speci�ed orthogonally—by location.We have recently shown
that this multi-phase structure can be expressed as a novel
applicative functor (also known as an idiom, or lax monoidal

functor). Here we summarize the idea from the perspective
of software architecture. At the end, we speculate about
applications to choreography and multi-tier architecture.
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1 Introduction

Consider the problem of sorting the elements of a tree. Given
a tree datatype:

data Tree a = Node a (Forest a)

type Forest a = [Tree a]

and an input tree as on the left below:

3 1 1

5

4 9

2

1 1 3

4

2 5

9

the problem is to extract the elements [3, 1, 4, 1, 5, 9, 2] of
the tree through an in-order traversal, sort this list to ob-
tain [1, 1, 2, 3, 4, 5, 9], then replace the elements in the new
order to get the tree on the right. The problem is admittedly
arti�cial as stated, but it was introduced by Bird [1] as an
abstraction of compilation tasks like traversing an abstract
syntax tree once in order to gather declarations, resolve any
forward references, then distribute the results back over the
tree.
Of course, the problem can be solved directly by a pro-

gram following that description: traverse the tree to get a
list, sort the list, traverse the tree again to distribute the list.
And indeed, operationally that may be what should happen.
However, the two traversals have the same structure, and it
is clumsy to have to specify this structure twice. Bird’s argu-
ment was that lazy evaluation (in particular, letrec) allows
one to express the program with a single traversal of the
tree, by fusing the two traversals into one. One may argue
about whether Bird’s solution actually leads dynamically

to a single traversal of the tree, but that argument is not
our concern here: it is clear that Bird’s program statically

describes only a single traversal.
In response to Bird’s paper, Pettorossi [13, 14] showed

that laziness and circularity are not actually needed: higher-
order lambda abstraction su�ces. We have shown [7] that
in fact Bird’s and Pettorossi’s solutions are really essentially

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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the same. One may view them both as specifying a multi-
phase computation (gather, process, distribute) then execut-
ing it. Bird uses laziness to delay certain evaluation until it is
needed; Pettorossi constructs a closure before applying it to
the needed value. We explicate the multi-phase computation
that is the essence of both solutions.
Concretely, we de�ne a type Phases m a parametrized by

a type m of e�ects and a return type a, representing a multi-
phase computationwith e�ect inm and returning an a. When
m is an Applicative functor [10], so too is Phases m. There
are functions

phase :: Applicative m⇒ Int → m a→ Phases m a

runPhases :: Applicative m⇒ Phases m a→ m a

to inject a computation in one phase of a multi-phase com-
putation, and to sequence the phases. Sorting a tree uses
the e�ects State [a] to act on a state consisting of the list of
elements:

sortTree :: Ord a⇒ Tree a→ Tree a

sortTree t = evalState (runPhases (sortTreeAux t)) [ ]

sortTreeAux :: Ord a⇒ Tree a→ Phases (State [a]) (Tree a)

sortTreeAux t

= phase 1 (traverse (_x → push x) t) ∗›

phase 2 (modify sort) ∗›

phase 3 (traverse (_x → pop) t)

(here, evalState :: State s a → (s → a) is a standard func-
tion for the State monad). The traversal in phase 1 gathers
elements; phase 2 sorts the list, without touching the tree;
the traversal in phase 3 distributes the elements back over
the tree. Crucially, the speci�cations of actions in di�erent
phases commute, even when their executions do not; after all,
“do X now and Y later” is equivalent to “do Y later and X now”.
So we can permute the phases to bring the two traversals
together:

sortTreeAux t

= phase 2 (modify sort) ∗›

phase 1 (traverse (_x → push x) t) ∗›

phase 3 (traverse (_x → pop) t)

and then fuse the two traversals into one:

sortTreeAux t

= phase 2 (modify sort) ∗›

traverse (_x → phase 1 (push x) ∗› phase 3 pop) t

which has manifestly only a single traversal. The details are
in the paper [7].

Our purpose in this short note is to raise awareness of the
multi-phase construction, in the hope that it can be a useful
functional software architecture technique. We can merely
sketch the ideas here, but the full details are in the paper.

2 Applicative Programming with E�ects

Moggi [11] and Wadler [18] famously showed that e�ectful
programs could be written in a pure functional language
using monads. McBride and Paterson [10] showed later that
the slightly less powerful abstraction of applicative functors
often su�ce, with some advantages. We will use the latter:

class Functor m⇒ Applicative mwhere

pure :: a→ m a

(‹∗›) ::m (a→ b) → m a→ m b

(subject to some laws, omitted for brevity). Thus, plain values
can be lifted to pure computations, and one can sequence
two computations and combine their results. From this we
can derive combination by pairing:

(⊗) :: Applicative m⇒ m a→ m b→ m (a, b)

xs ⊗ ys = pure (,) ‹∗› xs ‹∗› ys

(here, (,) :: a → b → (a, b) is curried pairing) and biased
sequencing, discarding the result from the �rst computation:

(∗›) :: Applicative m⇒ m a→ m b→ m b

xs ∗› ys = fmap snd (xs ⊗ ys)

both of which we will use later.
Applicative traversal is “the essence of the Iterator design

pattern” [6], capturing computations that iterate over a data
structure, in a predetermined order, processing each element
in turn and collecting e�ects as they go:

class Functor t ⇒ Traversable t where

traverse :: Applicative m⇒ (a→ m b) → t a→ m (t b)

(again, subject to some omitted laws). For example, here are
left-to-right list traversal and in-order tree traversal:

instance Traversable [ ] where

traverse f [ ] = pure [ ]

traverse f (x : xs) = pure (:) ‹∗› f x ‹∗› traverse f xs

instance Traversable Tree where

traverse f (Node x ts) = pure Node ‹∗› f x ‹∗›

traverse (traverse f ) ts

Now consider the composition traverse f t ∗› traverse g t
of two traversals, discarding the results of the �rst, and simi-
larly a single traversal traverse (_x → f x ∗› g x) t with the
composition of the two bodies. In general, these cannot be
equal: the former performs all f -e�ects before any g-e�ects,
while the latter interleaves them. If the class of e�ects were
commutative, the interleaving would not matter; but that
condition is very restrictive. Happily, commutativity of the
whole class of e�ects is not necessary; it su�ces for f -e�ects
to commute with g-e�ects:

f x ⊗ g y = fmap twist (g y ⊗ f x)

where twist (x, y) = (y, x). That is, running f then g and
pairing the results is the same as running g then f and �ip-
pairing the results. The proof is in the paper [7].
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3 Two Phases

It turns out that two-phase computation can be captured
precisely by what is known as Day convolution [4]:

data Day m n awhere

Day :: (a→ b→ c) → m a→ n b→ Day m n c

(perhaps not surprising, given that Day convolution and ap-
plicative functors are deeply connected [15]). Thus,Day f xs ys

represents a two-phase computation, with subcomputation
xs happening in phase one generating e�ects in m, and ys in
phase two generating e�ects in n, packaged up with a func-
tion f to combine the results from the two phases. Moreover,
Day m n is an applicative functor when m and n both are:

instance (Applicative m,Applicative n) ⇒

Applicative (Day m n) where

pure x = Day (curry fst) (pure x) (pure ())

Day f xs ys ‹∗› Day g zs ws = Day h (xs ⊗ zs) (ys ⊗ ws)

where h (x, z) (y,w) = (f x y) (g z w)

(here, curry fst :: a→ () → a is half of the right unit isomor-
phism of products). We can inject into either phase, using
and discarding a trivial computation for the other phase:

phase1 :: (Applicative m,Applicative n) ⇒ m a→ Day m n a

phase1 xs = Day (curry fst) xs (pure ())

phase2 :: (Applicative m,Applicative n) ⇒ n a→ Day m n a

phase2 ys = Day (curry snd) (pure ()) ys

When the two classes of e�ects coincide, we can combine the
two phases, running one after the other and post-processing
the results:

runDay :: Applicative m⇒ Day m m a→ m a

runDay (Day f xs ys) = pure f ‹∗› xs ‹∗› ys

Crucially for us, computations in di�erent phases commute:

phase1 xs ⊗ phase2 ys = fmap twist (phase2 ys ⊗ phase1 xs)

For example, we can send a two-part greeting in separate
phases:

⟩⟩⟩ runDay (phase1 (putStr "Hello ") ∗›

phase2 (putStr "World"))

Hello World

It doesn’t matter if we specify those two phases in the oppo-
site order:

⟩⟩⟩ runDay (phase2 (putStr "World") ∗›

phase1 (putStr "Hello "))

Hello World

We can even interleave the speci�cation of fragments from
di�erent phases:

⟩⟩⟩ runDay (phase1 (putStr "Hel") ∗›

phase2 (putStr "World") ∗›

phase1 (putStr "lo "))

Hello World

4 Multiple Phases

We now generalize from two-phase computations to multiple
(zero or more) phases [5]:

data Phases m awhere

Pure :: a→ Phases m a

Link :: (a→ b→ c) → m a→ Phases m b→ Phases m c

Here, Pure produces a chain with no e�ectful phases, and
Link adds one more e�ectful phase to the chain. It is essen-
tially a homogeneous iteration of Day convolution (Link
constructs the Day convolution of f with Phases f ), just as
lists are essentially a homogeneous iteration of pairing (with
cons pairing a list head with a tail). There is a single initial
value as the base case; each additional link in the chain adds
a combining function and a collection of values; and the
types are all compatible “in the obvious way”.
We implement an Applicative instance that zips together

chains: composing xs and ys should mean “in phase 1, exe-
cute phase 1 of xs and then phase 1 of ys; in phase 2, execute
phase 2 of xs then phase 2 of ys” and so on. To implement this,
we need the underlying e�ect m itself to be an Applicative

and not just a Functor :

instance Applicative m⇒ Applicative (Phases m) where

pure x = Pure x

Pure f ‹∗› xs = fmap f xs

fs ‹∗› Pure x = fmap (_f → f x) fs

Link f xs ys ‹∗› Link g zs ws = Link h (xs ⊗ zs) (ys ⊗ ws)

where h (x, z) (y,w) = (f x y) (g z w)

(Note that the same Phases m datatype is also the carrier
of the free applicative induced by functor m [2]. Informally,
this is de�ned in such a way that composition concatenates
chains rather than zipping them, assuming only the weaker
Functor condition on m.)
We can inject into any phase:

now :: Applicative m⇒ m a→ Phases m a

now xs = Link (curry fst) xs (Pure ())

later :: Applicative m⇒ Phases m a→ Phases m a

later xs = Link (curry snd) (pure ()) xs

phase :: Applicative m⇒ Int → m a→ Phases m a

phase 1 = now

phase i = later ◦ phase (i − 1)

and sequence together the phases:

runPhases :: Applicative m⇒ Phases m a→ m a

runPhases (Pure x) = pure x

runPhases (Link f xs ys) = pure f ‹∗› xs ‹∗› runPhases ys

And again, computations in di�erent phases commute:

phase i xs ⊗ phase j ys = fmap twist (phase j ys ⊗ phase i xs)

provided i ≠ j.
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5 Examples

We have seen the outline of the tree-sorting example already.
The remaining details are that push x and pop manipulate
the list stored in the state:

push :: a→ State [a] ()

push x = modify (x:)

pop :: State [a] a

pop = do {x : xs← get; put xs; return x }

(here, get, put, and modify are more standard functions for
the State monad).

5.1 Repmin

A related example, also from Bird’s paper [1] and also ad-
dressed by Pettorossi [13], is to replace every element of a
tree with the minimum element in the tree. Bird solves the
problem with a circular lazy program, computing both the
minimum and the new tree in a single pass; Pettorossi uses
a higher-order abstraction, computing the minimum and a
function from a value to a constant tree, then applies the
latter to the former. We [7] show a single traversal yielding
a two-phase computation

repminAux :: Tree Int → Day WInt RInt (Tree Int)

repminAux

= traverse (_x → phase1 (tellMin x) ∗› phase2 askMin)

where WInt is theWriter monad on minimizing Ints:

typeWInt = Writer (Min Int)

tellMin :: Int → WInt ()

tellMin x = tell (Min x)

and RInt is the Reader monad on the same type:

type RInt = Reader (Min Int)

askMin :: RInt Int

askMin = fmap getMin ask

This core is common to Bird’s and Pettorossi’s solutions;
their di�erence is in how to extract the two phases. (Because
two di�erent classes of e�ect are involved, runDay isn’t ap-
plicable.) Bird unwraps the writer and reader computation
in parallel:

parWR :: Day (Writer s) (Reader s) a→ a

parWR (Day f xs ys)

= let ((x, s), y) = (runWriter xs, runReader ys s)

in f x y

repminRSB :: Tree Int → Tree Int

repminRSB t = parWR (repminAux t)

Note that parWR is circular, with s appearing on both sides
of the local declaration, so the let must have letrec seman-
tics. In contrast, Pettorossi unwraps the writer and reader
computations sequentially:

seqWR :: Day (Writer s) (Reader s) a→ a

seqWR (Day f xs ys) = let (x, s) = runWriter xs

y = runReader ys s

in f x y

repminADP :: Tree Int → Tree Int

repminADP t = seqWR (repminAux t)

Now there is no circularity, and a plain non-recursive let

su�ces. Moreover, in a lazy language, clearly parWR and
seqWR are equal, and so too therefore are repminRSB and
repminADP.

5.2 Breadth-�rst Traversal

A third example concerns breadth-�rst traversal of trees.
Depth-�rst traversal is straightforward, because it is obvi-
ously compositional with respect to the tree structure:

d� :: Applicative m⇒ (a→ m b) → Tree a→ m (Tree b)

d� f (Node x ts) = pure Node ‹∗› f x ‹∗› traverse (d� f ) ts

(this de�nition is equivalent to the Traversable instance shown
in Section 2). To obtain breadth-�rst traversal, it su�ces to
schedule the visits to di�erent levels in di�erent phases, us-
ing now and later :

b�′ :: Applicative m⇒

(a→ m b) → Tree a→ Phases m (Tree b)

b�′ f (Node x ts)

= pure Node ‹∗› now (f x) ‹∗› later (traverse (b�′ f ) ts)

The root label x is processed ‘now’; a multi-phase computa-
tion is constructed for each child in ts, zipped together by
levels using traverse on lists, then postponed until one phase
‘later’. To obtain something of the right type for Traversable,
we just have to �atten the phases:

b� :: Applicative m⇒ (a→ m b) → Tree a→ m (Tree b)

b� f = runPhases ◦ b�′ f

In particular, we can relabel a tree in breadth-�rst order,
needing neither queues [12] nor cyclicity and laziness [9]:

b� :: Tree a→ [b] → Tree b

b� t xs = evalState (b� (_x → pop) t) xs

6 Discussion

Nearly �fty years ago, Jackson’s in�uential book [8] argued
that programs are clearest when they follow the structure of
the data they consume and produce; and consequently, that
the knottiest problems in software architecture are when
these structures clash. A rather canonical instance of that
phenomenon is provided by breadth-�rst traversal, which
very much goes “against the grain” of the tree structure.
We expect that there are other thorny problems in software
architecture that may be susceptible to this multi-phase ap-
proach.
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The tree-sorting and repmin examples are di�erent in
kind to breadth-�rst traversal. Although we used Phases for
tree-sorting, it is similar to repmin in the sense that the
number of phases is statically determined (three for sorting,
two for repmin), whereas for breadth-�rst traversal it is only
dynamically known (determined by the depth of the tree).
We likewise expect that this �xed collection of execution
phases, naturally speci�ed in a di�erent order than they are
executed, is a recurring pattern in software architecture.
In particular, we conjecture that process choreography is

one such example. In choreographic programming, a single
global program speci�es a distributed system; end-point pro-
jection translates this to separate local programs for each
node of the system. Recent work [16] has demonstrated that
this translation can be captured in terms of free monads. Per-
haps it can also fruitfully be expressed using Phases: all the
applications we have described here involve phases indexed
by natural numbers, which have an inherent ordering, but
there seems to be no reason not to allow a computation to
be split into fragments indexed instead by location. Similarly,
we conjecture that a multi-tier application architecture [3]
can be modelled as a Phases computation indexed by tier (for
example, presentation layer, logic layer, data layer).

Our Phases type is homogeneous; one might wonder (and
indeed, one reviewer asked) about a heterogeneous general-
ization. Formally, that would be no more general: the compo-
sition (or even the Day convolution) of distinct Applicatives
is again Applicative, so any heterogeneous application can
always be upcast to a homogeneous one. We can already get
a glimpse of that in the repmin example: the ‘min’ phase uses
only the Writer e�ect, and the ‘rep’ phase only the Reader
e�ect. Since there are only two static phases in this example,
we could get away with Day convolution, which can be het-
erogeneous. If we had instead a dynamic multi-phase compu-
tation, with some phases using Reader and notWriter , some
Writer and not Reader , they could still all be expressed homo-
geneously in the combined e�ect Day (Writer s) (Reader s).

As a �nal thought: in retrospect, maybe “staging” wasn’t
the best choice of term to use in the original paper [7]. That
term has a speci�c technical meaning in program generation
[17]: an earlier phase generates code that is not analysed or
executed until a later phase. Our meaning here is less speci�c:
an earlier phase generates some computation (which could
be an actual function, but in our approach is a data structure
that represents a function) which is executed in a later phase;
but all the analysis happens up front.
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